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Abstract. In the paper Deformation theory of abelian categories, the last two authors proved
that an abelian category with enough injectives can be reconstructed as the category of finitely
presented modules over the category of its injective objects. We show a generalization of this
to pretriangulated dg-categories with a left bounded non-degenerate t-structure with enough
derived injectives, the latter being derived enhancements of the injective objects in the heart
of the t-structure. Such dg-categories (with an additional hypothesis of closure under suitable
products) can be completely described in terms of left bounded twisted complexes of their
derived injectives.
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1. Introduction

This paper is the first one in an ongoing project to develop the deformation theory of triangu-
lated categories with t-structure. The current paper is intended as the foundation for [9, 10] in
which the actual deformation theory is developed. Taken together these papers should be viewed
as sequels to [17, 16] which are about the deformation theory of abelian categories. An abelian
category can always be viewed as the heart of the tautological t-structure on its (triangulated)
derived category and this provides the link of the current “triangulated” setting with the earlier
“abelian” setting.

To be more concrete let k be a field and let A be a k-linear abelian category. In [16] the
last two authors defined the Hochschild cohomology HH∗(A) of A and showed that HH2,3(A)
provides an obstruction theory1 for the (suitably defined) deformations of A. Restricting ourselves
for simplicity to first order deformations we have in particular that HH2(A) parametrizes the
deformations of A over the dual numbers D0 := k[ϵ]/(ϵ2).

It seems natural to look for a deformation theoretic interpretation of the higher Hochschild
cohomology groups of A. Indeed based on general principles the Hochschild cohomology groups
HHn(A) for n ≥ 2 “should” correspond to deformations of A over the DG-algebra D2−n =
k[ϵ]/(ϵ2) where now |ϵ| = 2− n. However it is impossible to realize this objective in the abelian
world as there is no sensible notion of a D2−n-linear abelian category. But we will show that it is
possible do it in the triangulated world! Indeed the theory developed in the current paper allows
one to associate to a class in η ∈ HHn(A) for n ≥ 3 a triangulated category D+(A)η with t-
structure (whose heart happens to be also A) which is linear over D2−n and which for all practical
purposes behaves as a deformation of D+(A) corresponding to η (see [9]). In a subsequent
paper [10] we will show that this procedure is in fact reversible and that all deformations of
D+(A) over D2−n (for a suitable notion of deformation) are of the form D+(A)η.

Note however that it may appear that we are actually solving a non-problem. Indeed, unsur-
prisingly the abstract theory of triangulated categories is too weak for us and we work instead
with pretriangulated dg-categories [3] which have in particular a standard notion of Hochschild
cohomology. So let A be a pretriangulated dg-category. If η̃ is a Hochschild cocycle representing
a class η ∈ HH∗(A) then we may use it to deform the DG-category A [14]2 much in the same way
as we deform algebras, and so in particular the presence of a t-structure seems to be irrelevant!
The catch however is that in general η̃ will have curvature and hence the same will be true for
the corresponding deformation of A (roughly speaking d2 ̸= 0) [6, 15]. Homological algebra over
curved dg-categories is possible [6, 18] but presents rather serious technical difficulties. One may
attempt to solve this “curvature problem” by replacing A by a Morita equivalent dg-category
A′ (which has the same Hochschild cohomology as A) such that over A′, η may be represented
by a cocycle without curvature but this appears not to be possible in general [12]. Part of the
motivation for the papers [9, 10] is now precisely to show that the curvature problem can be
solved in a natural way for triangulated categories with t-structure.

1The methods in loc. cit. may also be used to give natural deformation theoretic interpretations for the lower
groups HH0,1(A).

2We are skipping some technicalities. Either one has to replace A by a cofibrant model, or else one has to use
A∞-categories.
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Now we describe more concretely the content of the current paper. Let us first recall the
abelian setting [17, 16]. Assume that A is an abelian category with enough injectives and let

E = InjA . (1.1)

Then E has weak cokernels and it particular the category of finitely presented left E-modules
(denoted by mod(Eop)) is abelian (in other words E is left coherent). Moreover the restricted
Yoneda functor A 7→ E(A,−) gives an equivalence of categories

A ∼= mod(Eop)op
. (1.2)

Furthermore the relations (1.1) and (1.2) are in fact reversible. In other words we may start with
a Karoubian additive coherent category E, put A := mod(Eop)op and then we find E ∼= InjA.
Elaborating on this one finds that there is an equivalence of categories

{Abelian categories with enough injectives, with functors possessing an exact left adjoint}
∼= {Karoubian additive coherent categories} (1.3)

and this provides a natural path towards the deformation theory of abelian categories. For
example if A is linear over a field k then we put HH∗k(A) := HH∗k(E).

The main result in the current paper is an analogue of (1.2) in the triangulated setting. From
now on we fix a ground field k and all objects will be k-linear. Let T be a triangulated category
equipped with a t-structure with heart T♡. We say that T has enough derived injectives if
T♡ has enough injectives and for every injective I in T♡ there exists an object L(I) ∈ T such
that T(−, L(I)) ∼= T♡(H0(−), I). From this definition it is clear that the category of derived
injectives in T is closed under (existing) products.

We now state our main results. They are triangulated analogues of the results outlined above
in the abelian case.3

Proposition 1.1 (Dual version of Lemma 6.10, Definition 5.8). Assume that T is a triangluated
category with t-structure which has enough derived injectives and furthermore that it is “en-
hanced” in the sense of [3]. I.e. T = H0(A) where A is a pretriangulated dg-category4 (see
§2.1). Let J be the full sub-dg-category of A spanned by the derived injective objects.

The dg-category J is (left) homotopically locally coherent (hlc). I.e.
• J is cohomologically concentrated in nonpositive degrees: for all A,A′ ∈ J, we have
Hi(J(A,A′)) = 0 for all i > 0.

• H0(J) is an additive, left coherent k-linear category.
• For all i ∈ Z and all A ∈ J, the left H0(J)-module Hi(J(A,−)) is finitely presented.

Moreover the category H0(J) is Karoubian.

The following theorem provides a method for constructing triangulated categories with a t-
structure and with enough - prescribed - derived injectives.

Theorem 1.2 (Dual version of Theorem 7.1: “construction”). Let J be a hlc dg-category
such that H0(J) is Karoubian. Then the dg-category Tw+(J) = Tw−(Jop)op of bounded below
twisted complexes over J (see §4) has a non-degenerate t-structure whose heart is the category

3For compatibility with the abelian case we state our results here under the assumption that there are enough
derived injectives. However in the body of the paper the results will be stated for triangulated categories with
enough derived projectives.

4Note that the notation H0 denotes both the ordinary linear category associated to a dg-category and the
cohomological functor associated to a t-structure. Since both notations are quite standard this dual use appears
difficult to avoid.
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mod(H0(J)op)op, has enough derived injectives, and the dg-category of derived injectives is the
closure of J ↪→ Tw+(J) under isomorphisms in H0(Tw+(J)).

Moreover, if H0(J) is closed under countable products, then the t-structure on Tw+(J) is closed
under countable products, that is, the aisles Tw+(J)≥M are closed under countable products.

If B is a dg-category then we denote by h-proj(B) the category of h-projective (see (2.1))
right B-modules. Theorem 1.2 is established by showing that the totalisation dg-functor induces
a quasi-equivalence:

Tot: Tw+(J)→ h-proj−(Jop)hfp,op.

where, the dg-category h-proj−(Jop)hfp is given by

h-proj−(Jop)hfp = {M ∈ h-proj(Jop) : Hi(M) ∈ mod(H0(Jop)) ∀ i,Hi(M) = 0 for i≫ 0}.

The following theorem explains how a pretriangulated dg-category may be reconstructed from
its category of derived injectives.

Theorem 1.3 (Dual version of Theorem 7.2: “reconstruction”). Let A be a pretriangulated
dg-category with a non-degenerate left bounded t-structure, with enough derived injectives, and
which is closed under countable products (namely, the aisles H0(A)≥M are closed under countable
products). Let J be the dg-category of derived injectives. The restricted Yoneda-functor

Aop → h-proj−(Jop) : A 7→ A(A,−)

is t-exact and induces a quasi-equivalence between the dg-categories Aop and h-proj−(Jop)hfp ≈
Tw−(Jop). In particular we obtain a quasi-equivalence between A and Tw+(J).

The above “construction” and “reconstruction” theorems can be enhanced to a functorial
correspondence. We denote by Hqe the homotopy category of (small) dg-categories, namely the
localization of the category of (small) dg-categories along quasi-equivalences. We further define
categories as follows (dual versions of Definition 7.7 and Definition 7.9):

• The category HqeDGInj has objects the dg-categories J which are (left) hlc and such that
H0(J) is Karoubian; a morphism F : J → J′ in HqeDGInj is a morphism in Hqe such
that for all J ′ ∈ J′, the H0(Jop)-module H0(J′)(J ′, F (−)) is finitely presented. We also
denote by HqeDGInj

Π the full subcategory of HqeDGInj of dg-categories J such that H0(J)
is closed under countable products.

• The category Hqet+ has objects the dg-categories A endowed with a non-degenerate left
bounded t-structure with enough derived injectives; a morphism in Hqet+ is a morphism
in Hqe which has a t-exact left adjoint. We also denote by Hqet+

Π the full subcategory
of Hqet+ of dg-categories A with a t-structure which is closed under countable products
(i.e. the aisles H0(A)≥M are closed under countable products).

Then, we have the following theorem.

Theorem 1.4 (Dual version of Theorem 7.12: “correspondence”). The mapping J 7→ Tw+(J)
for J ∈ HqeDGInj gives rise to a fully faithful functor

Tw+ : HqeDGInj → Hqet+,

which induces an equivalence of categories

Tw+ : HqeDGInj
Π → Hqet+

Π .

The inverse is given by taking derived injectives:

DGInj : Hqet+
Π → HqeDGInj

Π .
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2. Preliminaries

We fix once and for all a ground field k. Every category will be assumed to be k-linear.
Moreover, we shall work within a fixed universe U , and every category A,B,Q, . . . we shall fix
will be U-small.

2.1. Dg-categories. We assume the reader to be acquainted with triangulated categories and
dg-categories, see for example [11] or [24]. We recollect here some notation and terminology we
shall need throughout the paper.

2.1.1. The (locally U-small) dg-category of U-small cochain complexes over k is denoted by
Cdg(k).

For any pair of dg-categories A and B, we have the (U-small) dg-category of dg-functors
Fundg(A,B), which is the internal hom in the symmetric monoidal category dgCat of (U-small)
dg-categories, namely it satisfies the natural isomorphism:

Fundg(A⊗B,C) ∼= Fundg(A,Fundg(B,C)),
for all A,B,C ∈ dgCat. The dg-category A ⊗ B is the tensor product of A and B, and it is
U-small.

The dg-category of (right) A-dg-modules is defined by
Cdg(A) = Fundg(Aop,Cdg(k)),

whereas left A-dg-modules are by definition Aop-dg-modules. Moreover, we set:
C(A) = Z0(Cdg(A)),
K(A) = H0(Cdg(A)).

The derived category D(A) of A is the localization of C(A) (or equivalently K(A)) along
quasi-isomorphisms. We remark that Cdg(A),C(A),K(A),D(A) are all U-locally small.

Normally, we shall use the symbol “≈” meaning “isomorphic in the homotopy category H0(B)”
of a suitable dg-category B. In particular, for two given M,N ∈ Cdg(A), we write M ≈ N

whenever M ∼= N in K(A) and sometimes M
qis
≈ N whenever M ∼= N in D(A).

2.1.2. A dg-functor F : A → B between dg-categories is a quasi-equivalence if it induces quasi-
isomorphisms between the hom-complexes, and H0(F ) : H0(A) → H0(B) is essentially surjec-
tive. The category dgCat of U-small dg-categories has a model structure whose weak equivalences
are the quasi-equivalences (see [22]). We denote by Hqe the homotopy category of dg-categories,
namely the localization of dgCat along quasi-equivalences. Two dg-categories are quasi-equivalent
if they are isomorphic in Hqe. We also say that a dg-category A is essentially U-small if it is
quasi-equivalent to a U-small dg-category.

2.1.3. A dg-module P ∈ Cdg(A) is h-projective if
K(A)(P,X) = 0, (2.1)

for all acyclic A-dg-modules X; equivalently, if the localization functor K(A) → D(A) induces
an isomorphism

K(A)(P,X) ∼−→ D(A)(P,X), (2.2)
for all X ∈ Cdg(A). The full dg-subcategory of Cdg(A) of h-projective dg-modules is denoted by
h-proj(A). The restriction of the localization functor

H0(h-proj(A))→ D(A)
is an equivalence, so h-proj(A) is a dg-enhancement of D(A).
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Notice that for any A ∈ A, the representable dg-module A(−, A) is h-projective by the dg-
Yoneda lemma. So, the Yoneda embedding gives rise to a dg-functor

hA : A ↪→ h-proj(A), (2.3)

which in turn induces the so-called derived Yoneda embedding:

H0(A) ↪→ D(A). (2.4)

2.1.4. Denote by pretr(A) the smallest full dg-subcategory of Cdg(A) which contains (the Yoneda
image of) A and is closed under taking shifts of dg-modules and mapping cones of closed degree
0 morphisms. We say that A is strongly pretriangulated (respectively, pretriangulated) if the
Yoneda embedding

A ↪→ pretr(A)

is a dg-equivalence (respectively, a quasi-equivalence). The dg-category pretr(A) is itself strongly
pretriangulated and it is called the pretriangulated hull of A. We remark that pretr(A) is
essentially U-small: in fact, it is equivalent to the U-small dg-category of bounded one-sided
twisted complexes on A (see [4, Definition 4.6]). A is a strongly pretriangulated dg-category if
and only if it is closed under pretriangles, which are sequences of the form

A
f
// B oo

s

j
// C(f) oo

i

p
// A[1], (2.5)

where f : A→ B is a closed degree 0 morphism in A. The object C(f) ∈ A is the cone of f , and
A[1] ∈ A is the shift of A. They are objects representing respectively the usual mapping cone
of f∗ : A(−, A)→ A(−, B) and the shift of A(−, A) in Cdg(A). The shifts A[m] of A come with
closed invertible degree n−m maps (“shifted identity morphisms”)

1(A,n,m) : A[n]→ A[m] (2.6)

which satisfy 1(m,n,A) ◦ 1(n,m,A) = 1(A,n,n) = 1A[n] The maps i, j, p, s characterise the cone (and
the pretriangle) as follows: they are of degree 0 and they describe C(f) as the biproduct A[1]⊕B
in the underlying graded category of A. Moreover, they satisfy:

dj = 0, dp = 0, di = jf1(A,1,0), ds = −f1(A,1,0)p.

This allows us use matrix notation as follows when describing maps to and from a cone:

u = (u1, u2) : C(f)→ D,

v =
(
v1
v2

)
: D → C(f).

We can also write down explicit formulas for the differentials:

du = (du1 − (−1)|u|u2f1(A,1,0), du2), dv =
(

dv1
dv2 + f1(A,1,0)v1

)
, (2.7)

where |u| is the degree of u.

2.2. Quasi-functors. The morphisms in the localization Hqe of dgCat along quasi-equivalences
can be described as isomorphism classes of quasi-functors (see [23] and [5]). Roughly speak-
ing, quasi-functors are “homotopy coherent dg-functors”, and they are defined as particular
dg-bimodules.
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2.2.1. Let A and B be dg-categories. An A-B-dg-bimodule is a right B⊗Aop-dg-module, namely
a dg-functor

T : Bop ⊗A→ Cdg(k).

We shall sometimes use the “Einstein notation”, writing

T (B,A) = TB
A ,

putting the contravariant variables above and the covariant ones below. We shall also write:

TA = T (−, A) ∈ Cdg(B),
TB = T (B,−) ∈ Cdg(Aop).

For any dg-category A we have the diagonal bimodule h = hA ∈ Cdg(A⊗Aop), defined by

hA
B = A(A,B).

This notation is consistent with the chosen name hA for the Yoneda embedding of A: in fact,
the Yoneda embedding is precisely the functor which maps

A 7→ hA(A) = A(−, A) = hA, A ∈ A.

2.2.2. A quasi-functor T : A→ B between two dg-categories is a dg-bimodule T ∈ Cdg(B⊗Aop)
with the property of being right quasi-representable, namely: for all A ∈ A, there exists an object
F (A) ∈ B such that TA

∼= hF (A) in D(B). From this, we see that a quasi-functor T induces a
genuine functor H0(T ) : H0(A) → H0(B). Two quasi-functors T, S are isomorphic if they are
isomorphic in the derived category D(B⊗Aop). As already said, isomorphism classes of quasi-
functors can be identified with the morphisms in the homotopy category Hqe of dg-categories.
From the general model-categorical machinery, we also know that a morphism A → B in Hqe
can be represented by a dg-functor whenever the domain dg-category A is cofibrant; moreover,
any dg-category A has a cofibrant replacement Q(A) which comes with a quasi-equivalence
Q(A)→ A.

2.2.3. There is a notion of adjunction of quasi-functors, investigated in [8]. Given two quasi-
functors T, S : A ⇆ B, we see that T ⊣ S if and only if there is an isomorphism in D(k)

Cdg(B)(Q(T )A, hB)
qis
≈ Cdg(A)(hA, SB) ∼= SA

B , (2.8)

“natural” in A and B, in the precise sense that the bimodules

(A,B) 7→ Cdg(B)(Q(T )A, hB),
(A,B) 7→ Cdg(A)(hA, SB) ∼= SA

B

are isomorphic in D(A ⊗ Bop). Here Q(T ) is an h-projective resolution of T as an A-B-dg-
bimodule. Recall from [5, Lemma 3.4] that in particular Q(T )A ∈ h-proj(B) for all A ∈ A.
It is worth mentioning that in case T is such that TA ∈ h-proj(B) for all A ∈ A, there is an
isomorphism in D(k)

Cdg(B)(Q(T )A, hB)
qis
≈ Cdg(B)(TA, hB),

“natural” in A and B, so the adjunction T ⊣ S is given by an isomorphism in D(k)

Cdg(B)(TA, hB)
qis
≈ Cdg(A)(hA, SB) ∼= SA

B .
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3. Homotopy colimits and t-structures

3.1. Homotopy colimits in triangulated categories. We start by recalling the notion of
homotopy colimit of a sequence in a fixed k-linear triangulated category T. We shall tacitly
assume that any coproduct (direct sum) we write exists in T.

Definition 3.1. Let (An
jn,n+1−−−−→ An+1)n≥0 be a sequence of maps in T. The homotopy col-

imit holim−→n
An is defined as the object (uniquely determined up to isomorphism) sitting in the

following distinguished triangle:⊕
n

An
1−µ−−−→

⊕
n

An → holim−→
n

An, (3.1)

where µ is the map induced by

An
jn,n+1−−−−→ An+1

incln+1−−−−−→
⊕

n

An.

A homotopy limit is defined as a homotopy colimit in Top. Explicity, assume that every direct
product we shall write exists in T, and let (An+1

πn+1,n−−−−→ An)n≥0 be a sequence of maps in
T. Then, the homotopy limit holim←−n

An is defined as the object (uniquely determined up to
isomorphism) sitting in the following distinguished triangle:

holim←−
n

An →
∏
n

An
1−ν−−→

∏
n

An, (3.2)

where ν is the map induced by ∏
n

An

prn+1−−−−→ An+1
πn+1,n−−−−→ An.

In the following discussion we shall concentrate on homotopy colimits; changing T with Top

gives the formal analogous facts about homotopy limits.
Being defined as C(1− µ) in T, the homotopy limit is not functorial. Still, it satisfies a weak

universal property involving existence but not unicity. First, there are natural maps jn : An →
holim−→An such that the diagram

An

jn,n+1
//

jn
$$

An+1

jn+1

��

holim−→n
An

(3.3)

is commutative: these maps are just the components of the map ⊕nAn
⊕jn−−→ holim−→n

An, and the
above commutativity is equivalent to saying that the composition⊕

n

An
1−µ−−−→

⊕
n

An
⊕jn−−→ holim−→

n

An

is zero. Moreover, for any family of maps fn : An → X such that the diagram

An

jn,n+1
//

fn
""

An+1

fn+1

��

X
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is commutative (that is, the composition⊕
n

An
1−µ−−−→

⊕
n

An
⊕fn−−−→ X

is zero), there is a map f : holim−→n
An → X such that fn = f ◦ jn for all n:

An
fn //

jn

��

X

holim−→n
An.

f

::

(3.4)

Such f is obtained non-uniquely by observing that in the exact sequence

T(holim−→
n

An, X) (⊕jn)∗

−−−−→ T(
⊕

n

An, X) (1−µ)∗

−−−−→ T(
⊕

n

An, X)

the element (fn) ∈ T(
⊕

n An, X) is in ker(1− ν)∗ = Im((⊕jn)∗).

3.2. Homotopy colimits in dg-categories. Now, let A be a dg-category. First, we discuss
strictly dg-functorial homotopy (co)limits of dg-modules.

Definition 3.2. Let (Mn+1
pn+1,n−−−−→ Mn)n≥0 be a sequence of closed degree 0 maps in Cdg(A).

Its (strictly dg-functorial) homotopy limit is defined as the shifted mapping cone holim←−n
Mi =

C(1− ν)[−1], sitting in the following pretriangle:

holim←−
n

Mn →
∏
n

Mn
1−ν−−→

∏
n

Mn,

where ν is the (closed, degree 0) map induced by∏
n

Mn

prn+1−−−−→Mn+1
pn+1,n−−−−→Mn.

Dually, let (Nn
jn,n+1−−−−→ Nn+1)n≥0 be a sequence in Cdg(A). Its (strictly dg-functorial) ho-

motopy colimit is defined as the mapping cone holim−→n
Nn = C(1 − µ), sitting in the following

pretriangle: ⊕
n

Nn
1−µ−−−→

⊕
n

Nn → holim−→
n

Nn,

where µ is the (closed, degree 0) map induced by

Nn
jn,n+1−−−−→ Nn+1

incln+1−−−−−→
⊕

n

Nn.

It is immediate to check that there are (strict) isomorphisms of complexes:

Cdg(A)(X,holim←−
n

Mn) ∼= holim←−
n

Cdg(A)(X,Mn),

Cdg(A)(holim−→
n

Nn, X) ∼= holim←−
n

Cdg(A)(Nn, X),
(3.5)

both natural in X ∈ Cdg(A).
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The homotopy (co)limits holim←−n
Mn and holim−→n

Nn are defined as mapping cones in Cdg(A),
so we know how to describe maps to and from them. In particular, let X ∈ Cdg(A) and let

X
(kn)

%%

(fn)
��∏

n Mn
1−ν
//
∏

n Mn,

be a diagram where (fn)n is closed of degree i and (kn)n is of degree i− 1 such that d((kn)n) +
(1− ν) ◦ (fn) = 0, namely

dkn = pn+1,n ◦ fn+1 − fn.

Then, there is an induced closed degree i morphism

holim←−
n

(fn, kn) : X → holim←−
n

Mn. (3.6)

Dually, let Y ∈ Cdg(A) and let ⊕
n Nn

1−µ
//

⊕ln

%%

⊕
n Nn

⊕gn

��

Y,

be a diagram where ⊕gn is closed of degree i and ⊕ln is of degree i − 1 such that d(⊕ln) =
(−1)i(⊕gn) ◦ (1− µ), namely:

dln = (−1)i(gn − gn+1 ◦ jn,n+1).

Then, there is an induced degree i morphism

holim−→
n

(gn, ln) : holim−→
n

Nn → Y. (3.7)

We can now give the following definition.

Definition 3.3. Let (An
jn,n+1−−−−→ An+1)n≥0 be a sequence of closed degree 0 maps in A,

and let holim←−n
A(An,−) be the strictly dg-functorial homotopy limit of the induced sequence

(A(An+1,−)
j∗

n,n+1−−−−→ A(An,−))n in Cdg(A). The (dg-functorial) homotopy colimit of (An →
An+1)n is an object holim−→n

An together with an isomorphism

A(holim−→
n

An,−)→ holim←−
n

A(An,−)

in the derived category D(Aop).

Remark 3.4. Let (An
jn,n+1−−−−→ An+1)n≥0 be as in the above Definition 3.3, and let B ∈ A. An

element in Zi(holim←−n
A(An, B)) is explicitly given by a family (fn, kn)n≥0 where fn : An → B is

closed of degree i and kn : An → B is a “homotopy” of degree i−1 such that dkn = fn+1jn,n+1−fn

for all n. In other words, the diagram

An

jn,n+1
//

fn
""

An+1

fn+1

��

B
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is commutative up to dkn. By the Yoneda lemma, giving (fn, kn)n ∈ Zi(holim←−n
A(An, B)) is the

same as giving a closed degree i morphism in Cdg(Aop):

holim←−
n

(f∗n, k∗n) : A(B,−)→ holim←−
n

A(An,−). (3.8)

Again by the Yoneda lemma, note that we have natural isomorphisms:

K(Aop)(A(B,−),holim←−
n

A(An,−)[i]) ∼= D(Aop)(A(B,−),holim←−
n

A(An,−)[i])

∼= Hi(holim←−
n

A(An, B)),

Hence, we can restate the definition of homotopy colimit as follow. The homotopy colimit of
(An

jn,n+1−−−−→ An+1)n≥0 is a pair

(holim−→
n

An ∈ A, [(jn, hn)n] ∈ H0(holim←−
n

A(An,holim−→
n

An)))

such that the induced map

holim←−
n

(j∗n, h∗n) : A(holim←−
n

An,−)→ holim←−
n

A(An,−).

is a quasi-isomorphism. This means that whenever we are given B ∈ A with a class [(fn, kn)n] ∈
Hi(holim←−n

A(An, B)), there is a unique [f ] ∈ Hi(A(holim−→n
An, B)) such that

[(f ◦ jn, f ◦ hn)n] = [(fn, kn)n].

In other words, given B ∈ A and a morphism

holim←−
n

(f∗n, k∗n) : A(B,−)→ holim←−
n

A(An,−)[i]

in D(Aop), there is a unique [f ] ∈ Hi(A(holim−→n
An, B)) such that the diagram

A(B,−)
holim←−n

(f∗
n,k∗

n)
//

f∗

��

holim←−n
A(An,−)

A(holim−→n
An,−).

holim←−n
(j∗

n,h∗
n)

55

(3.9)

is commutative in D(Aop). In particular, notice that [f ◦ jn] = [fn] in Hi(A(An, B)), for all n.

Now, assume that A is a pretriangulated dg-category and let (An
jn,n+1−−−−→ An+1)n≥0 be a

sequence of closed degree 0 maps in A such that the coproduct
⊕

n An exists in H0(A). Then,
the homotopy colimit of (An

jn,n+1−−−−→ An+1)n≥0 exists in A. First, we note that the dg-module∏
n A(An,−) is quasi-representable. Indeed, we have closed degree 0 maps incln : An →

⊕
n An

such that
H0(A)(

⊕
n

An,−) ([incln]∗)n−−−−−−−→
∏
n

H0(A)(An,−)

is an isomorphism of left H0(A)-modules. Clearly, the maps incln induce a morphism in
Cdg(Aop):

A(
⊕

n

An,−) (incl∗
n)n−−−−−→

∏
n

A(An,−).
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This is actually a quasi-isomorphism. By shifting, it is enough to check that it induces an
isomorphism in H0, and indeed

H0(A(An,−))→ H0(
∏
n

A(An,−)) ∼−→
∏
n

H0(A(An,−))

is precisely the above H0(A)(
⊕

n An,−) ([incln]∗)n−−−−−−−→
∏

n H
0(A)(An,−).

Now, since A is pretriangulated, the sequence (An
[jn,n+1]−−−−−→ An+1)n in H0(A) has a homotopy

colimit holim−→n
An in the sense of Definition 3.1. Moreover, we have a diagram with distinguished

rows in D(Aop):

A(holim−→n
An,−) //

∼
��

A(
⊕

n An,−) //

∼
��

A(
⊕

n An,−)

∼
��

holim←−n
A(An,−) //

∏
n A(An,−) //

∏
n A(An,−).

From this, we get an isomorphism A(holim−→n
An,−) ∼−→ holim←−n

A(An,−) in D(Aop). We sum up
what we found:

Lemma 3.5. Let A be a pretriangulated dg-category, and let (An
jn,n+1−−−−→)n≥0 be a sequence of

closed degree 0 maps such that
⊕

n An exists in H0(A). Then, if holim−→n
An is the homotopy

colimit of the sequence (An
[jn,n+1]−−−−−→)n≥0 in H0(A) in the sense of Definition 3.1, there is an

isomorphism
A(holim−→

n

An,−)→ holim←−
n

A(An,−)

in D(Aop). In other words, A is closed under (dg-functorial) homotopy colimits which, as objects,
are described by (non-functorial) homotopy colimits in the homotopy category.

3.3. t-structures and homotopy colimits. Now, let T be a triangulated category endowed
with a t-structure (T≤0,T≥0), with heart T♡ (see [2] for the basic reference on t-structures).
The zeroth cohomology functor given by the t-structure on T is denoted by

H0(−) = τ≤0τ≥0 : T→ T♡, (3.10)

where τ≥0 and τ≥0 are the truncation functors. We also define the i-th cohomology:

Hi(−) = H0(−[i]) = τ≤iτ≥i.

We define full subcategories of T as follows:

T− =
⋃

n≥0
T≤n, (3.11)

T+ =
⋃

n≥0
T≥−n. (3.12)

We have inclusions
T≤n ⊆ {A ∈ T : Hi(A) = 0 ∀ i > n},
T≥n ⊆ {A ∈ T : Hi(A) = 0 ∀ i < n}.

(3.13)

We recall that an exact functor F : T → T′ between triangulated categories with t-structures
is t-exact if it preserves the aisles: F (T≤n) ⊆ T′≤n and F (T≥n) ⊆ T′≥n; equivalently, if it
commutes with the truncation functors.
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Lemma 3.6. T+ and T− are strictly full triangulated subcategories of T closed under direct
summands, and the t-structure on T induces t-structures on T+ and T− such that the inclusions
T+ ↪→ T and T− ↪→ T are t-exact. In particular, the hearts of both T+ and T− coincide with
T♡.

We say that the t-structure (T≤0,T≥0) is right bounded (or bounded from above) if the inclu-
sion T− ↪→ T is an equivalence. Dually, we say that it is left bounded (or bounded from below)
if the inclusion T+ ↪→ T is an equivalence.

We say that the t-structure (T≤0,T≥0) is left separated if⋂
n≥0

T≤−n = 0. (3.14)

Dually, we say that it is right separated if⋂
n≥0

T≥n = 0. (3.15)

Finally, we say that the t-structure (T≤0,T≥0) is non-degenerate if it is both right and left
separated. In this case (see [2, Proposition 1.3.7]) we have that Hi(A) = 0 for all i if and only
if A ∼= 0 in T, and the inclusions (3.13) are actual equalities:

T≥n = {A ∈ T : Hi(A) = 0 ∀ i < n},
T≤n = {A ∈ T : Hi(A) = 0 ∀ i > n}.

(3.16)

Remark 3.7. The t-structure (T≤0,T≥0) is left separated if and only if the induced t-structure
on T− is non-degenerate. Dually, the t-structure (T≤0,T≥0) is right separated if and only if the
induced t-structure on T+ is non-degenerate.

We are going to work with homotopy colimits inside triangulated categories with a t-structure;
we now explain a useful assumption which ensures the existence of the homotopy colimits we
shall need.

Definition 3.8. We say that the t-structure (T≤0,T≥0) is closed under countable coproducts if
the aisle T≤0 is closed under countable coproducts.

Dually, we say that the t-structure (T≤0,T≥0) is closed under countable products if T≥0 is
closed under countable products.

Remark 3.9. Being left adjoints, the inclusions T≤M ↪→ T are cocontinuous. Hence, the t-
structure (T≤0,T≥0) is closed under countable coproducts if and only if any countable family of
objects {An} in T≤0 has a direct sum

⊕
n An in T.

Moreover, we can check that T≤0 is closed under countable coproducts if and only if T≤M

is closed under countable coproducts for all M ∈ Z. Indeed, if {An} is a countable family in
T≤M , the shifted family {An[M ]} lies in T≤0, and assuming that

⊕
n An[M ] exists in T≤0, we

immediately see that (
⊕

n An[M ])[−M ] is the coproduct of the An in T≤M .
Clearly, the above discussion dualizes directly to t-structures which are closed under countable

products.

We now prove a lemma which describes the t-structure cohomology of homotopy colimits of
particular sequences which are eventually constant in cohomology.

Lemma 3.10. Let T be a triangulated category with a non-degenerate t-structure. Let

(X−k
j−k,−k−1−−−−−−→ X−k−1)k≥0
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be a sequence of maps in T and assume that the direct sum
⊕

k X−k exists in T. Let X =
holim−→k

X−k, together with the natural maps j−k : X−k → X (see (3.3)). If for all n ≥ 0 the
induced morphism

Hi(j−n,−n−1) : Hi(X−n)→ Hi(X−n−1)
is an isomorphism for i > −n and an epimorphism for i = −n, then for all n ≥ 0 the induced
morphism

Hi(j−n) : Hi(X−n)→ Hi(X)
is an isomorphism for i > −n and an epimorphism for i = −n.

Proof. Set C−n,−n−1 = C(j−n,−n−1)[−1] and C−n = C(j−n)[−1]. Then, the hypothesis is equiv-
alent to

∀n ≥ 0, Hi(C−n,−n−1) = 0 ∀ i > −n,
and the thesis is equivalent to

∀n ≥ 0, Hi(C−n) = 0 ∀ i > −n.
By (3.16), the hypothesis is

∀n ≥ 0, T(C−n,−n−1, Z) = 0 ∀Z ∈ T>−n,

and the thesis is
∀n ≥ 0, T(C−n, Z) = 0 ∀Z ∈ T>−n.

Let n ≥ 0 and let Z ∈ T>−n. For −k < −n, consider the exact sequence:
T(C−k,−k−1[1], Z)→ T(X−k−1, Z)→ T(X−k, Z)→ T(C−k,−k−1, Z).

By hypothesis, we have T(C−k,−k−1, Y ) = 0 for all Y ∈ T>−k, in particular for Y = Z ∈
T>−n ⊆ T>−k; also T(C−k,−k−1[1], Z) ∼= T(C−k,−k−1, Z[−1]) = 0, for Z[−1] ∈ T>−n like Z.
So, T(X−k−1, Z)→ T(X−k, Z) is an isomorphism, and we get a chain of isomorphisms

· · · ∼−→ T(X−n−2, Z) ∼−→ T(X−n−1, Z) ∼−→ T(X−n, Z).
Hence, T(X−n, Z) is the inverse limit lim←−k

T(X−k, Z), together with the maps T(X−n, Z) →
T(X−k, Z) obtained composing the suitable morphisms j∗−i,−i−1 or their inverses. Moreover,
since the sequence (T(Z,X−k))k is definitely constant, the morphism∏

k

T(X−k, Z) 1−ν−−→
∏

k

T(X−k, Z)

is surjective, and hence the following sequence (exhibiting T(X−n, Z) as the above inverse limit)
is exact:

0→ T(X−n, Z)→
∏

k

T(X−k, Z) 1−ν−−→
∏

k

T(X−k, Z)→ 0,

where T(X−n, Z)→
∏

k T(X−k, Z) is induced by the above maps T(X−n, Z)→ T(X−k, Z). On
the other hand, we have the distinguished triangle⊕

k

X−k
1−µ−−−→

⊕
k

X−k
⊕j−k−−−→ X.

Upon identifying
∏

k T(X−k, Z) = T(
⊕

k X−k, Z), we get a commutative diagram with exact
rows:∏

k T(X−k[1], Z) //
∏

k T(X−k[1], Z) // T(X,Z)

j∗
−n

��

//
∏

k T(X−k, Z) //
∏

k T(X−k, Z)

0 // T(X−n, Z) //
∏

k T(X−k, Z) //
∏

k T(X−k, Z).
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Notice that T(X−k[1], Z) ∼= T(X−k, Z[−1]) and Z[−1] ∈ T>−n since Z ∈ T>−n, therefore the
morphism

∏
k T(X−k[1], Z) →

∏
k T(X−k[1], Z) is surjective, so the map

∏
k T(X−k[1], Z) →

T(X,Z) is the zero map, and T(X,Z) →
∏

k T(X−k, Z) is monic. Then, by exactness, that is
a kernel of

∏
k T(X−k, Z) →

∏
k T(X−k, Z), just as T(X−n, Z) →

∏
k T(X−k, Z). We deduce

that
j∗−n : T(X,Z)→ T(X−n, Z) (3.17)

is an isomorphism. This is true for all n ≥ 0 and for all Z ∈ T>−n. In particular, we also have
that

j∗−n−1 : T(X,Z[1])→ T(X−n−1, Z[1]) (3.18)
is an isomorphism for the same n and Z, since Z[1] ∈ T>−n−1.

Next, we consider the following commutative diagram with exact rows:

T(X,Z)
j∗

−n
//

j∗
−n−1

��

T(X−n, Z) // T(C−n, Z)

��

// T(X[−1], Z)

j−n−1[−1]∗

��

// T(X−n[−1], Z)

T(X−n−1, Z) ∼ // T(X−n, Z) // T(C−n,−n−1, Z) // T(X−n−1[−1], Z) // T(X−n[−1], Z),

where the map T(C−n, Z)→ T(C−n,−n−1, Z) is induced by

C−n,−n−1

��

// X−n

j−n,−n−1
// X−n−1

j−n−1

��

C−n
// X−n

j−n
// X.

Since Z ∈ T>−n ⊆ T>−n−1, j∗−n−1 is an isomorphism (see (3.17) above). Moreover, (3.18) holds
and j−n−1[−1]∗ is an isomorphism. By the five lemma, we conclude that

T(C−n, Z)→ T(C−n,−n−1, Z)

is an isomorphism, hence T(C−n, Z) = 0 as required. □

Corollary 3.11. Let T be a triangulated category with a non-degenerate t-structure. Assume
we are given a sequence (X−k

j−k,−k−1−−−−−−→ X−k−1)k≥0 such that
⊕

k X−k exists in T. Assume
moreover that for all n ≥ 0 Hi(j−n,−n−1) is an isomorphism for i > −n and an epimorphism
for i = n, as in Lemma 3.10. Next, let Y ∈ T be an object and let f−n : X−n → Y be maps such
that the diagram

X−n

j−n,−n−1

��

fn

""
X−n−1

f−n−1

// Y

is commutative for all n ≥ 0. Moreover, assume that for all i ∈ Z, the induced maps

Hi(f−n) : Hi(X−n)→ Hi(Y )

are isomorphisms for all n > M(i) sufficiently large. Then, any morphism f : holim−→n
X−n → Y

satisfying f ◦ j−n = f−n is such that

Hi(f) : Hi(holim−→
n

X−n)→ Hi(Y )

is an isomorphism for all i ∈ Z. In particular, f : holim−→n
X−n → Y is an isomorphism in T.
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Proof. Fix i ∈ Z. By Lemma 3.10 we know that

Hi(j−n) : Hi(X−n)→ Hi(holim−→
n

X−n)

is an isomorphism for all −n < i. So, take n > max(M(i),−i) sufficiently large, so that

Hi(f−n) : Hi(X−n)→ Hi(Y )

is also an isomorphism. Since we have by hypothesis

Hi(f) ◦Hi(j−n) = Hi(f−n),

we conclude that Hi(f) is an isomorphism, as desired. □

Remark 3.12. Let (X−k
j−k,−k−1−−−−−−→ X−k−1)k≥0 be a sequence such that X−k ∈ T≤M for all k ≥ 0,

for some M ∈ Z, and assume that the t-structure
⊕

k X−k exists in T. then,
⊕

k X−k and
holim−→k

X−k lie in T≤M . Indeed, given Z ∈ T≥M+1, we first have:

T(
⊕

k

X−k, Z) =
∏

k

T(X−k, Z) = 0.

Moreover, the space T(holim−→k
X−k, Z) sits in the following exact sequence:

T(
⊕

k

X−k, Z[−1])→ T(holim−→
k

X−k, Z)→ T(
⊕

k

X−k, Z),

and by hypothesis we find out that T(holim−→k
X−k, Z) = 0.

Remark 3.13. Let T be closed under countable coproducts. The above discussion actually shows
that the t-structure (T≤0,T≥0) is closed under countable coproducts (Definition 3.8). Now,
assume that T is closed under countable coproducts and has a left separated t-structure. Then,
we deduce that T− has a non-degenerate t-structure which is closed under countable coproducts.
In particular, Lemma 3.10 and Corollary 3.11 can be applied in T− to sequences (X−k

j−k,−k−1−−−−−−→
X−k−1)k≥0 such that X−k ∈ T≤M for all k ≥ 0, for some M ∈ Z.

4. Bounded above twisted complexes

Twisted complexes on dg-categories were introduced in [3]. In this section we present a slightly
different flavour of this notion which brings us to the definition of bounded above twisted complexes
on a dg-category with cohomology in nonpositive degrees.

4.1. The dg-category of Maurer-Cartan objects. In this subsection we fix a k-linear dg-
category A.

Definition 4.1. Let B ⊆ Cdg(A) be a full dg-subcategory. We define the dg-category MC(B)
of Maurer-Cartan objects of B as follows:

• Objects of MC(B) are pairs (M, q), where M is an object of B, and q : M → M is a
degree 1 morphism such that dq + q2 = 0.

• A degree p morphism f : (M, q)→ (M ′, q′) is a degree p morphism M →M ′ in B. The
differential of f is defined by:

dMC(B)(f) = dBf + q′f − (−1)pfq. (4.1)

It is easy to check that MC(B) is indeed a dg-category. If B is U-small, then also MC(B) is
U-small. There is a totalisation dg-functor

Tot: MC(B)→ Cdg(A), (4.2)
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defined as follows:
Tot(M, q) = (M,dM + q),

Tot((M, q) f−→ (M ′, q′)) = (M,dM + q) f−→ (M ′, dM ′ + q′).
In other words, an object (M, q) is mapped to the dg-module whose underlying graded module
is the same as M but with differential changed to dM + q; a morphism f : (M, q) → (M ′, q′) is
mapped to itself viewed as a morphism of dg-modules (M,dM + q) → (M ′, dM ′ + q′). We can
check:

Lemma 4.2. The above definition gives a well-defined dg-functor Tot which is fully faithful.

Proposition 4.3. Assume that B ⊆ Cdg(A) is closed under taking shifts and finite direct sums.
Then, MC(B) is a strongly pretriangulated dg-category.

Proof. Given an object (M, q) ∈ MC(B), its n-shift is given by
(M, q)[n] = (M [n], (−1)nq[n]). (4.3)

Given a closed and degree 0 morphism f : (M, q)→ (M ′, q′), its cone is given by

C(f) = (M [1]⊕M ′,
(
−q[1] 0

f1(M,1,0) q′

)
). (4.4)

□

4.2. Bounded above twisted complexes. Here we fix a dg-category A whose cohomology is
concentrated in nonpositive degrees, namely:

Hi(A(A,B)) = 0, ∀ i > 0, ∀A,B ∈ A.
We identify A with its image under the Yoneda embedding A ↪→ Cdg(A). Let us denote by A⊕
the closure of A under finite direct sums and zero objects (in Cdg(A)). We denote by A← the
full dg-subcategory of Cdg(A) whose objects are given by direct sums⊕

i∈Z
Ai[−i], (4.5)

where Ai ∈ A⊕, and Ai = 0 for i≫ 0. The dg-category A← is clearly U-small.

Definition 4.4. A (bounded above) one-sided twisted complex on A is a pair (⊕i∈ZAi[−i], q) ∈
MC(A←), where q = (qj

i : Ai[−i]→ Aj [−j])i,j∈Z is such that qj
i = 0 whenever j ≤ i.

A one-sided morphism of degree p
f : (⊕i∈ZAi[−i], q)→ (⊕i∈ZBi[−i], q′)

between one-sided twisted complexes is a morphism f = (f j
i : Ai[−i]→ Bj [−j])i,j∈Z of degree p

in MC(A←) such that f j
i = 0 whenever i− j + p > 0.

The dg-subcategory of (bounded above) one-sided twisted complexes and one-sided morphisms
in MC(A←) is denoted by Tw−(A).

The full dg-subcategory of Tw−(A) whose objects are the bounded one-sided twisted com-
plexes, namely the objects of the form (

⊕
i Ai[−i], q) with Ai = 0 for i≫ 0 or i≪ 0, is denoted

by Tw−b (A).

It is easily checked that the identity morphisms of one-sided twisted complexes are one-sided,
and that the composition of one-sided morphisms is one-sided. Hence, Tw−(A) is actually a well-
defined (non-full) U-small dg-subcategory of MC(A←). Notice that if A ∈ A, then the object
(A, 0) is a one-sided twisted complexes (A lying in degree 0). We shall often abuse notation and
identify

A = (A, 0) ∈ Tw−(A). (4.6)
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Moreover, Tot(A, 0) = Tot(A) is precisely the representable dg-module A(−, A).
Now, we would like to describe more explicitly the objects and morphisms in the dg-category

Tw−(A). The idea is that a (one-sided) twisted complex (⊕Ai[−i], q) should be a complex with
a “twisted differential” q, the object Ai sitting in degree i. This involves just some care with
sign conventions. We sum everything up in the following remark, leaving it to the reader to fill
in the details.

Remark 4.5. An object X ∈ Tw−(A) can be viewed as a pair (Ai, q
j
i ), where Ai ∈ A⊕, Ai = 0

for i ≫ 0 and qj
i : Ai → Aj is a morphism of degree i − j + 1 for all i, j ∈ Z, such that the

following identity holds:
(−1)jdqj

i + qj
kq

k
i = 0, (4.7)

adopting the Einstein summation convention:

qj
kq

k
i =

∑
k

qj
kq

k
i .

A (not necessarily one-sided) morphism f : (Ai, q
j
i )→ (A′i, q′

j
i ) of degree p can be viewed as a

matrix of morphisms f j
i : Ai → Aj , where f j

i has degree i− j + p. f is one-sided if by definition
we have f j

i = 0 if i− j + p > 0. The differential of f is given by:

(df)j
i = (−1)jdf j

i + q′
j
kf

k
i − (−1)pf j

kq
k
i . (4.8)

Notice that
Hom(⊕Ai[−i],⊕A′j [−j]) ∼=

∏
i

⊕
j

Hom(Ai[−i], Aj [−j]),

using the universal property of the direct sum and the Yoneda Lemma, so the matrix (f j
i ) is

such that, for any i, the terms (f j
i )j of the i-th column are almost all zero. The same is true for

the matrices (qj
i ) and (q′ji ), hence the sums q′jkfk

i and f j
kq

k
j are actually finite.

Given a closed degree 0 map f : (Ai, q
j
i )→ (Bi, r

j
i ) of twisted complexes, its cone C(f) can be

described as the twisted complex

(Ai+1 ⊕Bi,

(
−qj+1

i+1 0
fj

i+1 rj
i

)
). (4.9)

Lemma 4.6. Tw−(A) is a strongly pretriangulated subcategory of MC(A←).

Proof. We only need to check that, given a closed degree 0 morphism in Tw−(A), namely a one-
sided morphism f : Q→ R between one-sided twisted complexes, the pretriangle in MC(A←)

Q
f−→ R→ C(f)→ Q[1]

lies in Tw−(A). But this is immediate. □

The reason why we defined Tw−(A) using one-sided morphisms is that the cone of a morphism
between one-sided twisted complexes is not in general a one-sided twisted complex, unless this
morphism is itself one-sided. The further requirement that A has cohomology concentrated in
nonpositive degrees ensures that we are not really losing any relevant information, as we see in
the following result.

Proposition 4.7. Let A be a dg-category with cohomology concentrated in nonpositive degrees.
Then, the inclusion functor

Tw−(A)→ MC(A←)
is quasi-fully faithful. In particular, the totalisation functor

Tot: Tw−(A)→ Cdg(A) (4.10)
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is quasi-fully faithful.

Proof. The totalisation MC(A←)→ Cdg(A) is fully faithful and both Tw−(A) and MC(A←) are
strongly pretriangulated, so we only need to show the following claims, for two given one-sided
twisted complexes Q,R ∈ Tw−(A):

(1) Given a closed degree 0 one-sided morphism f : Q → R, if f = dα for some (non neces-
sarily one-sided) degree −1 morphism α : Q → R, then there exists a one-sided degree
−1 morphism β : Q→ R such that f = dβ;

(2) For any closed and degree 0 (not necessarily one-sided) morphism f : Q→ R, there is a
degree −1 morphism α : Q→ R such that f − dα is a one-sided morphism.

Both claims follow from the following technical Lemma 4.8. □

Lemma 4.8. Let A be a dg-category with cohomology concentrated in nonpositive degrees. Let
f : Q→ R be a (non necessarily one-sided) degree p morphism between bounded above one-sided
twisted complexes Q = (Qi, q

i
j), R = (Ri, r

i
j) ∈ Tw−(A). Assume that the differential df is

one-sided. Then, there exists α : P → Q of degree p− 1 such that f − dα is one-sided.

Proof. By shifting, we can assume without loss of generality that f has degree 0 and that
Qi = Ri = 0 for all i > 0. For all i > 0, we define ni = i− 1, and for i ≤ 0 we define recursively:

ni = min{i− 1, ni+1, k : fk
i ̸= 0} ∈ Z.

Notice that ni < i and ni+1 ≤ ni for all i.
For all i > 0 and for all k ∈ Z, set αk

i = 0. This verifies the (empty) conditions:

fk
i = (−1)kdαk

i + rk
sα

s
i + αk

sq
s
i if k < i,

αk
i = 0 if k ≥ i or k < ni.

Now, let i ≥ 0. Assume recursively that we have defined αk
j for all j ≥ i + 1 and for all k ∈ Z,

such that:
fk

j = (−1)kdαk
j + rk

sα
s
j + αk

sq
s
j if k < j,

αk
j = 0 if k ≥ j or k < nj .

(4.11)

We are going to define αk
i so that the conditions (4.11) are satisfied. First, we set αk

i = 0 for all
k ≥ i and for all k < ni. Then, we let k < i and we define αk

i recursively. For the base step, we
define αni

i ; using that (df)ni
i = 0 by hypothesis since ni < i, we compute:

0 = (df)ni
i = (−1)nidfni

i +
∑
s<ni

rni
s fs

i −
∑
s>i

fni
s qs

i

We have written explicit summation symbols for the sake of clarity: by construction
∑

s<ni
rni

s fs
i

vanishes, and since s > ns ≥ ni for s > i, we can apply the inductive hypothesis to
∑

s>i f
ni
s qs

i ,
finding:

0 = (−1)nidfni
i − (−1)ni

∑
s>i,s<ni

dαni
s qs

i −
∑

s>i,t<ni

(rni
t αt

sq
s
i + αni

t qt
sq

s
i ).

Next,
∑

s>i,t<ni
rni

t αt
sq

s
i vanishes because if s > i and t < ni then t < ns, and by definition

αt
s = 0. We resume forgetting the summation symbols and we note that −qt

sq
s
i = (−1)tdqt

i ,
hence we go on:

0 = (−1)nidfni
i + (−1)ni+1dαsq

s
i + (−1)tαni

t dqt
i

= (−1)nidfni
i + (−1)ni+1d(αni

t qt
i).
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Finally, we have that (−1)nifni
i + (−1)ni+1αni

t qt
i is a cocycle of positive degree. Since A ha

cohomology concentrated in nonpositive degrees, this is a coboundary: we find αni
i such that

fni
i = (−1)nidαni

i + αni
s qs

i = (−1)nidαni
i + rni

s αs
i + αni

s qs
i .

For the inductive step, we assume we have defined the required αh
i for h = ni, ni + 1, . . . , k − 1

satisfying (4.11), and we define αk
i which satisfies the analogue conditions. The technique is

similar to the one used for the base step, and it is left to the reader.
At the end of this process, we get a degree −1 morphism α : Q → R. By constructions, it is

immediate to see that
f j

i − (dα)j
i = 0

whenever j < i. Namely, f − dα is one-sided. □

Remark 4.9. The construction A 7→ Tw−(A) is functorial in A. Namely, given a dg-functor
F : A → B between dg-categories with cohomology concentrated in negative degrees, there is a
functorially induced dg-functor Tw−(F ) : Tw−(A)→ Tw−(B), defined as follows:

Tw−(F )(⊕Ai[−i], q) = (⊕F (Ai)[−i], F (q)),

Tw−(F )((⊕Ai[−i], q)
f−→ (⊕Bj [−j], r))

= (⊕F (Ai)[−i], F (q)) F (f)−−−→ (⊕F (Bj)[−j], F (r)),

(4.12)

where we abused notation a little, identifying F with its extension to A⊕. The above definition
is good since clearly Tw−(F ) maps (bounded above) one-sided twisted complexes and one-sided
morphisms to (bounded above) one-sided twisted complexes and one-sided morphisms.

4.3. Twisted complexes and colimits. We shall work again with a dg-category A with coho-
mology concentrated in nonpositive degrees. We first convince ourselves that “stupid truncations”
are well defined for twisted complexes. Let X = (⊕iAi[−i], q) ∈ Tw−(A). For all n ∈ Z, define

σ≥nX = (⊕i≥nAi[−i], σ≥nq) ∈ Tw−b (A), (4.13)
where σ≥nq is obtained from q by restriction:

(σ≥nq)j
i = qj

i , i, j ≥ n. (4.14)
We easily see that

(−1)jd((σ≥nq)j
i ) + (σ≥nq)j

k(σ≥nq)k
i

= (−1)jd(qj
i ) + qj

kq
k
i = 0

if i, j ≥ n (since q is “one-sided”, the sum is over k ≥ i).
There are natural (closed, degree 0) inclusions in Tw−(A):

φn : σ≥nX → X, φn,n−1 : σ≥nX → σ≥n−1X (4.15)
such that the following diagram is commutative:

σ≥nX
φn,n−1

//

φn−1
""

σ≥n−1X

φn
zz

X.

(4.16)

For the underlying graded modules, these maps are just the inclusions:⊕
i≥n

Ai[−i]→
⊕

i≥n−1
Ai[−i]→ · · · →

⊕
i

Ai[−i].
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They are clearly of degree 0. Let us verify, for example, that φn is closed. We compute directly:

d(φn)j
i = (−1)jd((φn)j

i ) + (σ≥n−1q)j
k(φn)k

i − (φn)j
k(σ≥nq)k

i

= (σ≥n−1q)j
i (φn)i

i − (φn)j
k(σ≥nq)k

i .

Now, if both i, j ≥ n, we have (φn)i
i = 1, (φn)j

j = 1 and (σ≥n−1q)j
i = (σ≥nq)j

i = qj
i , so d(φn)j

i = 0.
On the other hand, if i < n, we have (φn)i

i = 0 and (σ≥nq)j
i = 0, so the above expression is

0; instead, if j < n we have (φn)j
j = 0, and if i < j also (φn)i

i = 0, whereas if i ≥ j then
(σ≥n−1q)j

i = 0. So, in any case (dφn)j
i = 0, as claimed.

Remark 4.10. Given X = (⊕iAi[−i], q) as above and n ∈ Z, there is a closed degree 0 map

βn : An−1[−n]→ σ≥nX (4.17)

in Tw−(A), simply defined using the twisted differentials of X:

(βn)j
n = qj

n−1, j > n− 1.

By definition it has degree 0, and

(dβn)j
n = (−1)jd(qj

n−1) + qj
k(βn)k

n

= (−1)jd(qj
n−1) + qj

kq
k
n−1 = 0.

By definition

C(βn) = (An−1[−n+ 1]⊕ σ≥nX,
(

0 0
βn1(An−1,−n+1,−n) σ≥nq

)
) = σ≥n−1X.

The map φn,n−1 is precisely the natural inclusion σ≥nX → C(βn). In other words, for any n ∈ Z,
there is a pretriangle in Tw−(A):

An−1[−n] βn−−→ σ≥nX
φn,n−1−−−−→ σ≥n−1X → An−1[−n+ 1]. (4.18)

The twisted complex X can be reconstructed from the truncations σ≥nX by taking the colimit.
More precisely, we have the following:

Proposition 4.11. Let n ∈ Z. The totalisation Tot(X), with the maps (Tot(φn−p))p≥0, is the
colimit of (Tot(σ≥n−pX),Tot(φn−p,n−p−1))p≥0 in C(A) = Z0(Cdg(A)):

Tot(X) ∼= lim−→
p≥0

Tot(σ≥n−pX). (4.19)

Proof. Assume we are given a dg-moduleM and closed degree 0 morphisms αn−p : Tot(σ≥n−pX)→
M for all p ≥ 0, such that αn−p = αn−p−1 ◦ Tot(φn−p,n−p−1) for all p ≥ 1. We want to define a
unique α : Tot(X)→M such that α ◦ Tot(φn−p) = αn−p for all p ≥ 0. We observe that

Tot(X) =
⋃
p≥0

φn−p(Tot(σ≥n−pX))

and the differential on Tot(φn−p)(Tot(σ≥n−pX)) is the restriction of the differential on Tot(X).
So, for all y ∈ Tot(X)(A), y = Tot(φn−p)(y′) for a unique y′, for some p ≥ 0. Hence, we are
forced to set

α(y) = αn−p(y′).

Now it is easy to verify that α is well-defined and satisfies the required properties. □
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It is known that the totalisation Tot(X) ∼= lim−→p
Tot(σ≥n−pX), as a directed colimit, lies in

the following short exact sequence in C(A):

0→
⊕
p≥0

Tot(σ≥n−pX) 1−µ−−−→
⊕
p≥0

Tot(σ≥n−pX) ⊕p Tot(φn−p)−−−−−−−−−→ Tot(X)→ 0, (4.20)

where µ is the morphism induced by

Tot(σ≥n−pX) Tot(φn−p,n−p−1)−−−−−−−−−−−→ Tot(σ≥n−p−1X)→
⊕
p≥0

Tot(σ≥n−pX).

Recall from Definition 3.2 that the (strictly dg-functorial) homotopy colimit holim−→p≥0 Tot(σ≥n−pX)
is the cone in the following pretriangle in Cdg(A):⊕

p≥0
Tot(σ≥n−pX) 1−µ−−−→

⊕
p≥0

Tot(σ≥n−pX)→ holim−→
p≥0

Tot(σ≥n−pX). (4.21)

In order to compare Tot(X) ∼= lim−→p
Tot(σ≥n−pX) and holim−→p

Tot(σ≥n−pX), we use the following
general result:

Lemma 4.12. Let
A

f−→ B
g−→ C

a degreewise split exact sequence of maps in Z0(A), namely, there are degree 0 (not necessarily
closed) maps σ : C → B and ρ : B → A such that B, together with those maps, is a biproduct of
A and C:

gf = 0, ρσ = 0, gσ = 1, ρf = 1, σg + fρ = 1.
Then, the closed degree 0 morphism φ : C(f)→ C defined by φ = (0, g) (with respect to the direct
sum decomposition C(f) = A[1] ⊕ B) is an isomorphism in H0(A). In particular, φ makes the
following diagram commute in Z0(A):

A
f
// B // C(f)

φ

��

A
f
// B

g
// C.

Proof. We define a homotopy inverse of φ as follows. Observe that d(gσ) = gdσ = 0, so fρdσ =
dσ − σgdσ = dσ. We set

ψ =
(
−δ
σ

)
: C → C(f),

where δ = 1(A,0,1)gdσ. This is a closed degree 0 morphism which serves as a homotopy inverse
to φ. □

Now, we check that the short exact sequence (4.20) is degreewise split. To do so, it is sufficient
to check that ⊕p Tot(φn−p) has a degree 0 section σ : Tot(X) →

⊕
p Tot(σ≥n−pX). We define

σ on Am[−m] to be the inclusion on the first summand:

Am[−m]→
⊕
p≥0

Am[−m]→
⊕
p≥0

Tot(σ≥n−pX), m ≥ n,

An−k[−n+ k]→
⊕
p≥k

An−k[−n+ k]→
⊕
p≥0

Tot(σ≥n−pX), k > 0.

It is immediate to check that ⊕p Tot(φn−p) ◦ σ = 1. Hence, from Lemma 4.12 we deduce:
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Proposition 4.13. The morphism ⊕p Tot(φn−p) induces an isomorphism

φ : holim−→
p≥0

Tot(σ≥n−pX)→ Tot(X) (4.22)

in K(A). Moreover, the following diagram is commutative in C(A) for all p ≥ 0:

Tot(σ≥n−pX)

��

Tot(φn−p)

((

holim−→p≥0 Tot(σ≥n−pX) φ
// Tot(X),

(4.23)

where the vertical arrow is the canonical morphism to the homotopy colimit.

We have seen how an object X ∈ Tw−(A) can be reconstructed from its truncations σ≥nX.
On the other hand, a twisted complex in Tw−(A) can be constructed from a suitable “increasing
sequence”:

Proposition 4.14. Let A be a dg-category. Assume there is a sequence (An)n≤M of objects of
A and a sequence (Xn)n≤M of twisted complexes in Tw−b (A) such that:

XM = AM [−M ],

Xn−1 = C(An−1[−n] βn−−→ Xn),

for suitable closed degree 0 morphisms βn : An−1[−n]→ Xn, so that there is a pretriangle

An−1[−n] βn−−→ Xn
φn,n−1−−−−→ Xn−1 → An−1[n+ 1]

in Tw−(A). Then, there is a twisted complex X ∈ Tw−(A) such that σ≥nX = Xn. In particular,
the totalisation Tot(X) (together with the natural inclusions Tot(XM−p)→ Tot(X)) is a colimit
of the sequence (Tot(XM−p) Tot(φM−p,M−p−1)−−−−−−−−−−−−→ Tot(Xm−p−1))p:

Tot(X) ∼= lim−→
p

Tot(XM−p).

Proof. By construction we have Xn−1 = (An−1[−n+ 1]⊕Xn,
(

0 0
βn1(An−1,−n+1,−n) qXn

)
). Hence,

we may set

X =

⊕
i≤M

Ai[−i], q

 ,

where qj
i : Qi → Qj is set to be (qXk

)j
i , for k ≤ min(i, j). This is well defined and by construction

σ≥nX = Xn. The last part of the claim follows from Proposition 4.11. □

If X ∈ Tw−(A), then σ≥n−pX ∈ Tw−b (A) for all p ≥ 0. From (4.18) it is easy to see that
σ≥n−pX, as any object in Tw−b (A), is obtained as an iterated cone of (shifts of) twisted complexes
of the form A = (A, 0) with A ∈ A. In particular, Tw−b (A) is strongly pretriangulated and the
totalisation functor restricts to

Tot: Tw−b (A)→ pretr(A) ⊂ h-proj(A), (4.24)

and Tot(σ≥n−pX) ∈ pretr(A). Since h-proj(A) is closed under direct sums, cones and isomor-
phisms in K(A), it is also closed under homotopy colimits, and we deduce:
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Proposition 4.15. For all X ∈ Tw−(A), the totalisation Tot(X) ≈ holim−→p
Tot(σ≥n−pX) is an

h-projective dg-module. In particular, Tot induces a fully faithful dg-functor

Tot: Tw−(A)→ h-proj(A) (4.25)

and hence also a fully faithful functor

H0(Tot) : H0(Tw−(A))→ D(A). (4.26)

It is well-known that the derived category D(A) of a dg-category A with cohomology concen-
trated in nonpositive degrees has a t-structure whose heart is the category Mod(H0(A)) (see [1,
Lem 2.2, Prop 2.3] for a proof when A is a dg-algebra). This allows us to use the results of §3.3
and describe the cohomology of the sequence of truncations (Tot(σ≥n−pX))p.

Lemma 4.16. Let X ∈ Tw−(A) be of the form X = (
⊕

j≤M A[−j], q), and consider the se-
quence (σ≥M−pX

φM−p,M−p−1−−−−−−−−−→ σ≥M−p−1X)p≥0 and the natural maps φM−p : σ≥M−pX → X
(see (4.16)). Then, the induced maps in cohomology

Hi(Tot(φM−p,M−p−1)) : Hi(Tot(σ≥M−pX))→ Hi(Tot(σ≥M−p−1X)),
Hi(Tot(φM−p)) : Hi(Tot(σ≥M−pX))→ Hi(Tot(X))

are isomorphisms for i > M − p and epimorphisms for i = M − p.

Proof. Upon shifting. assume M = 0 so that X = (
⊕

j≤0 Aj [−j], q). By (4.18), we have a
pretriangle in Cdg(A)

A−p−1[p]→ Tot(σ≥−pX)→ Tot(σ−p−1X)→ A−p−1[p+ 1],

where we identify A−p with A(−, A−p). Taking i-th cohomology, we get the following exact
sequence:

Hi+p(A−p−1)→Hi(Tot(σ≥−pX))→ Hi(Tot(σ≥−p−1X))
→ Hi+p+1(A−p−1).

A has cohomology concentrated in nonpositive degrees, hence if i > −p we have that both
Hi+p(A−p−1) = 0 and Hi+p+1(A−p−1) = 0, and if i = −p then only Hi+p+1(A−p−1) = 0. So,
the morphism

Hi(Tot(σ≥M−pX))→ Hi(Tot(σ≥M−p−1))

is an isomorphism if i > −p and an epimorphism if i = −p, and our first claim is proved.
Now, we can apply Lemma 3.10 to the induced sequence (Tot(σ−pX) → Tot(σ−p−1X))p in

D(A): we deduce that the natural map

Tot(σ≥−pX)→ holim−→
p

Tot(σ−pX)

into the (strictly dg-functorial) homotopy colimit holim−→p
Tot(σ−pX) is such that

Hi(Tot(σ≥−pX))→ Hi(holim−→
p

Tot(σ−pX))

is an isomorphism for i > −p and an epimorphism for i = p. Hence, our second claim follows
from Proposition 4.13: there is an isomorphism holim−→p

Tot(σ−pX)→ Tot(X) in K(A) such that
the diagram (4.23) is commutative. □
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4.4. Twisted complexes and quasi-equivalences. It is well known that a dg-functor F : A→
B induces a dg-functor

IndF : Cdg(A)→ Cdg(B), (4.27)
which is left adjoint to the restriction functor

ResF : Cdg(B)→ Cdg(A),
Y 7→ Y ◦ F.

We refer to [7] for its definition and we recall from there some of its relevant properties:
• IndF is left adjoint to the restriction functor ResF : Cdg(B) → Cdg(A) and it preserves

representable modules. Namely, there is an isomorphism of complexes

IndF (A(−, A)) ∼= B(−, F (A)),

natural in A ∈ A.
• IndF preserves h-projective modules and hence induces a dg-functor

IndF : h-proj(A)→ h-proj(B).

If F is fully faithful, the same is true for IndF ; if F is a quasi-equivalence, the same is
true for IndF : h-proj(A)→ h-proj(B).
• IndF preserves cones and shifts, hence it induces a dg-functor

IndF : pretr(A)→ pretr(B).

If F is a quasi-equivalence, the same is true for IndF : pretr(A)→ pretr(B).
Moreover, if i : A→ pretr(A) is the natural inclusion induced by the Yoneda embed-

ding, then Indi : Cdg(A)→ Cdg(pretr(A)) is an equivalence of dg-categories.

Remark 4.17. For all X ∈ h-proj(A) and Y ∈ h-proj(B), we have the adjunction isomorphism:

h-proj(B)(IndF (X), Y ) ∼= Cdg(A)(X,Y ◦ F ).

Hence, setting
(ResF )X

Y = Cdg(A)(X,Y ◦ F ) (4.28)
we have a candidate quasi-functor ResF : h-proj(B)→ h-proj(A) which is right adjoint to the dg-
functor IndF : h-proj(A)→ h-proj(B). Indeed, take an h-projective resolution Q(Y ◦F )→ Y ◦F ;
for all X ∈ h-proj(A), it induces a quasi-isomorphism

h-proj(A)(X,Q(Y ◦ F ))→ Cdg(A)(X,Y ◦ F ) = (ResF )X
Y ,

natural in X.

In a precise sense, the functor Tw−(−) (see Remark 4.9) can be viewed as a restriction of Ind:

Proposition 4.18. Let F : A→ B be a dg-functor between dg-categories with cohomology con-
centrated in nonpositive degrees. Then, the following diagram is commutative (up to natural
isomorphism):

Tw−(A)
Tw−(F )

//

TotA

��

Tw−(B)

TotB

��

h-proj(A) IndF // h-proj(B),

(4.29)

where TotA and TotB are the (quasi-fully faithful) totalisation functors (4.10), which have values
in h-projective modules thanks to Proposition 4.15.



T-STRUCTURES AND TWISTED COMPLEXES ON DERIVED INJECTIVES 26

Proof. Since IndF ⊣ ResF , it is sufficient to find an isomorphism of complexes

Cdg(B)(Tot(Tw−(F )(X)),M) ∼= Cdg(A)(Tot(X),ResF (M)),

natural in X ∈ Tw−(A) and M ∈ Cdg(B). This can be explicitly written down; the details are
left to the reader. □

The functor Tw−(−) preserves quasi-equivalence, as Ind does.

Proposition 4.19. Let F : A→ B be a dg-functor between dg-categories with cohomology con-
centrated in nonpositive degrees. If F is a quasi-equivalence, then Tw−(F ) is a quasi-equivalence.

Proof. We notationally identify both categories A and B with their images in Cdg(A) and Cdg(B)
under the Yoneda embedding. We know that IndF is a quasi-equivalence and both TotA and
TotB are quasi-fully faithful, so by the commutativity of (4.29) we immediately deduce that
Tw−(F ) is quasi-fully faithful.

In order to prove essential surjectivity in H0, let Y ∈ Tw−(B), and upon a suitable shift
assume it is of the form:

Y =

⊕
i≤0

Bi[−i], r

 .

From (4.18) we get a pretriangle in h-proj(B), for all p ≥ 0:

B−p−1[p]→ TotB(σ≥−pY )→ TotB(σ≥−p−1Y )→ B−p−1[p+ 1],

Since F is a quasi-equivalence, we can find X0 = A0 ∈ A such that F (A0) ≈ B0. Next, assume
inductively that σ≥−pY ∼= Tw−(F )(X−p) in H0(Tw−(B)), where

X−p =

 0⊕
i=−p

Ai[−i], qp

 ∈ Tw−b (A).

We have that B−p−1 ∼= F (A−p−1) in H0(B) for some A−p−1 ∈ A; consider the diagram in
h-proj(B):

B−p−1[p] //

≈
��

TotB(σ≥−pY )

≈
��

// TotB(σ≥−p−1Y )

≈
��

F (A−p−1[p])
TotB(Tw−(F )(β−p))

// TotB(Tw−(F )(X−p)) // TotB((Tw−(F )(X−p−1)).

By the inductive hypothesis the first two vertical arrows on the left are homotopy equivalences,
so that we can find a closed degree 0 map

F (A−p−1[p])→ TotB(Tw−(F )(Xp))

in h-proj(B), such that the leftmost square commutes up to homotopy. Following our convention
(4.6), we have

F (A−p−1[p]) = TotB(Tw−(F )(A−p−1[p]))

Since TotB ◦Tw−(F ) is quasi-fully faithful, the above map is (up to homotopy) of the form
TotB(Tw−(F ))(β−p), for some closed degree 0 morphism β−p : A−p−1[p] → X−p in Tw−(A).
We define X−p−1 = C(β−p) in Tw−(A), and clearly we can find the dotted vertical homotopy
equivalence which makes the above diagram commute in H0(h-proj(B)).
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We can now apply Proposition 4.14 and find X ∈ Tw−(A) such that σ≥−pX = X−p for all
p ≥ 0. Recall from Proposition 4.13 that

TotB(Y ) ≈ holim−→
p

TotB(σ≥−pY ),

TotA(X) ≈ holim−→
p

TotA(X−p).

Then, the commutative square in H0(h-proj(B))

TotB(σ≥−pY )

≈
��

// TotB(σ≥−p−1Y )

≈
��

TotB(Tw−(F )(Xp)) // TotB((Tw−(F )(Xp+1)).

tells us that
TotB(Y ) ≈ holim−→

p

TotB(σ≥−pY )

≈ holim−→
p

TotB(Tw−(F )(Xp)),

and moreover
holim−→

p

TotB(Tw−(F )(Xp)) ∼= holim−→
p

IndF (TotA(Xp))

∼= IndF (holim−→
p

TotA(Xp))

≈ IndF (TotA(X))
∼= TotB(Tw−(X)),

whence Y ∼= Tw−(X) in H0(Tw−(B)), as we wanted. In the above chain of homotopy equiva-
lences and isomorphisms, we used the commutativity of (4.29) and the fact that IndF commutes
with homotopy colimits (we invite the reader to check this using that IndF is a dg-functor which
preserves direct sums). □

5. Twisted complexes on homotopically locally coherent dg-categories

It is well-known that the derived category D(A) of a dg-category A with cohomology con-
centrated in nonpositive degrees has a (non-degenerate) t-structure whose heart is the category
Mod(H0(A)) (see [1, Lem 2.2, Prop 2.3] for a proof when A is a dg-algebra). In this section,
we give conditions on A in order that the triangulated category H0(Tw−(A)) naturally inherits
this t-structure.

5.1. Finitely presented modules and coherent categories. We start by briefly recalling the
notion of (right) coherent category and some related results we shall need. For this subsection,
we fix a k-linear category C.

Definition 5.1. A (right) C-module M ∈ Mod(C) is finitely presented if there is an exact
sequence

m⊕
j=1

C(−, C ′j)→
n⊕

i=1
C(−, Ci)→M → 0,

for some objects C1, . . . , Cn and C ′1, . . . , C
′
m in C. The full subcategory of finitely presented

modules of Mod(C) is denoted by mod(C).
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The following result is true without any additional hypothesis on C:

Proposition 5.2. The category mod(C) is closed under cokernels, extensions and direct sum-
mands in Mod(C).

Proof. It follows from [21, Tag 0517]. □

The definition of coherent category is as follows:

Definition 5.3. C is (right) coherent if mod(C) is an abelian category.

Since mod(C) has cokernels and it can be shown that the inclusion mod(C) ↪→ Mod(C)
preserves kernels, we deduce that C is coherent if and only if mod(C) is closed under kernels in
Mod(C). Next, we give a very useful characterisation of coherent additive categories:

Definition 5.4. Let f : C → C ′ be a morphism in C. A weak kernel of f is a morphism
g : D → C such that the sequence

C(−, D) g∗−→ C(−, C) f∗−→ C(−, C ′)
is exact in Mod(C). If every morphism in C has a weak kernel, we say that C admits weak
kernels.

Proposition 5.5 ([13, Lemma 1]). Assume that C is additive. Then C is coherent if and only
if it admits weak kernels.

5.2. Homotopically locally coherent dg-categories. By definition, the category of finitely
presented modules on a coherent category is an abelian subcategory of the category of modules.
In analogy, we now give a more general and “homotopically relevant” notion of coherence for
dg-categories: this will have the key property that a suitable category of h-projective and “homo-
topically finitely presented” dg-modules will inherit both the property of being pretriangulated
and the t-structure from the dg-category of h-projective dg-modules.

Remark 5.6. A t-structure on a pretriangulated dg-category A is by definition a t-structure on
the homotopy category H0(A). We shall denote by A≤n and A≥n the full dg-subcategories of
A with the same objects as the aisles H0(A)≤n and H0(A)≥n. Moreover, we shall denote by
A+ and A− the full dg-subcategories of A whose objects are the same as H0(A)+ and H0(A)−.
Given a quasi-functor F : A→ B between dg-categories with t-structures, we say that it is t-exact
(or that it preserves the t-structures) if H0(F ) does, namely if it commutes with the truncation
functors (or, equivalently, if it preserves the aisles). If A is strongly pretriangulated, then the
same is true for A+ and A−. For a given dg-category B, we shall sometimes write D−(B) and
h-proj−(B) instead of D(B)− and h-proj(B)−.

Definition 5.7. Let Q be a dg-category. A dg-module M ∈ Cdg(Q) is called homotopically
finitely presented (in short, hfp) if Hi(M) is a finitely presented H0(Q)-module for all i ∈ Z:

Hi(M) ∈ mod(H0(Q)), ∀ i ∈ Z.
We denote by h-proj(Q)hfp and D(Q)hfp the full subcategories of respectively h-proj(Q) and
D(Q) whose objects are the homotopically finitely presented Q-dg-modules:

h-proj(Q)hfp = {M ∈ h-proj(Q) : Hi(M) ∈ mod(H0(Q)) ∀ i}, (5.1)
D(Q)hfp = {M ∈ D(Q) : Hi(M) ∈ mod(H0(Q)) ∀ i}. (5.2)

We shall also set:
h-proj−(Q)hfp = {M ∈ h-proj(Q)hfp : Hi(M) = 0 ∀ i≫ 0}, (5.3)

D−(Q)hfp = {M ∈ D(Q)hfp : Hi(M) = 0 ∀ i≫ 0}. (5.4)
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Definition 5.8. A dg-category Q is called (right) homotopically locally coherent (in short, hlc)
if:

• Q is cohomologically concentrated in nonpositive degrees: for all A,A′ ∈ Q, we have
Hi(Q(A,A′)) = 0 for all i > 0.
• H0(Q) is an additive and (right) coherent k-linear category.
• For all A ∈ Q, the represented dg-module Q(−, A) is homotopically finitely presented,

in other words the H0(Q)-module Hi(Q(−, A)) is finitely presented for all i ∈ Z:
Hi(Q(−, A)) ∈ mod(H0(Q)).

There is a nice cohomological characterisation of the dg-category Tw−(Q) when Q is a hlc
dg-category, which will be proven in §5.3.

Theorem 5.9. Let Q be a hlc dg-category.
(1) The dg-category h-proj(Q)hfp of homotopically finitely presented (hfp) modules is strongly

pretriangulated and has a non-degenerate t-structure which is induced from h-proj(Q);
its heart is mod(H0(Q)).

In other words, the category D(Q)hfp is a triangulated subcategory of D(Q) and it has
a non-degenerate t-structure induced from D(Q); its heart is mod(H0(Q)).

(2) The totalisation dg-functor (4.25) induces a quasi-equivalence

Tot: Tw−(Q) ≈−→ h-proj−(Q)hfp.

In particular, Tw−(Q) has a unique non-degenerate right bounded t-structure with heart
mod(H0(Q)) and such that the totalisation functor is t-exact. Moreover, h-proj−(Q)hfp

is essentially U-small.

5.3. The resolution and the proof of Theorem 5.9. The proof of part 1 of Theorem 5.9
follows from the following two lemmas.

Lemma 5.10. The dg-category h-proj(Q)hfp is strongly pretriangulated. Moreover, its full dg-
subcategory h-proj−(Q)hfp is strongly pretriangulated and contains the representables Q(−, A).

Proof. By definition, h-proj(Q)hfp is closed under shifts, so to see that it is strongly pretrian-
gulated we only have to show that it is closed under cones. Let f : M → N a closed degree 0
morphism in h-proj(Q)hfp. It fits in the following pretriangle in h-proj(Q):

M
f−→ N

j−→ C(f) p−→M [1].
Taking cohomology, we obtain the following exact sequence:

Hi(M)→ Hi(N)→ Hi(C(f))→ Hi+1(M)→ Hi+1(N)
which also gives the following short exact sequence:

0→ coker(Hi(f))→ Hi(C(f))→ ker(Hi+1(f))→ 0.
Since Q is hlc, Hi(f) and Hi+1(f) are maps between objects in mod(H0(Q)). Also, since H0(Q)
is coherent, both coker(Hi(f)), ker(Hi+1(f)) ∈ mod(H0(Q)). Since the category mod(H0(Q)) is
closed under extensions, we deduce that

Hi(C(f)) ∈ mod(H0(Q)).
Finally, since Q is by hypothesis concentrated in nonpositive degrees, we immediately deduce

that h-proj−(Q)hfp contains all the representables. □

Lemma 5.11. Let Q be a hlc dg-category. Then, D(Q)hfp is a triangulated subcategory of D(Q)
stable under truncations, hence it has a non-degenerate t-structure induced from D(Q); its heart
is the category mod(H0(Q)).
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Proof. D(Q)hfp is clearly stable under truncations. To see that it is closed under direct sum-
mands, we directly apply Proposition 5.2. Its heart is then given by the intersection of D(Q)hfp

with the heart Mod(H0(Q)), which is immediately seen to be precisely mod(H0(Q)). □

Next, we prove part 2 of Theorem 5.9. We already know from Proposition 4.15 that the
totalisation Tot: Tw−(Q)→ h-proj(Q) is quasi-fully faithful, so we need to focus on its essential
image. First, we prove that totalisations of twisted complexes in Tw−(Q) land in the subcategory
h-proj−(Q)hfp:

Lemma 5.12. Let Q be a hlc dg-category, and let X = (
⊕

i≥M Ai[−i], q) ∈ Tw−(Q). Then,
Hi(Tot(X)) = 0 for i > M and Hi(Tot(X)) ∈ mod(H0(Q)) for all i ∈ Z. In particular, the
totalisation functor restricted to Tw−(Q) has image in h-proj−(Q)hfp:

Tot: Tw−(Q)→ h-proj−(Q)hfp.

Proof. Without loss of generality, we assume M = 0. By Lemma 4.16, we have for i ∈ Z and
−p < i that

Hi(Tot(X)) ∼= Hi(Tot(σ≥−pX)).
So, it is enough to prove the statement for σ≥−pX, for all p ≥ 0. We argue by induction. For
the base step, we have σ≥0X = A0 ∈ Q and the claim follows since Q is hlc. Next, assume the
thesis is true for σ≥−pX. From (4.18) we obtain a pretriangle in Cdg(Q):

Q(−, A−p−1)[p]→ Tot(σ≥−pX)→ Tot(σ≥−p−1X)→ Q(−, A−p−1)[p+ 1]. (5.5)

Taking i-th cohomology, we get an exact sequence in Mod(H0(Q)):

Hi+p(Q(−, A−p−1)) s−→ Hi(Tot(σ≥−pX))→ Hi(Tot(σ≥−p−1X))

→ Hi+p+1(Q(−, A−p−1)) t−→ Hi+1(Tot(σ≥−pX)).

Now, if i > 0 we have

Hi+p(Q(−, A−p−1)) = 0, Hi+p+1(Q(−, A−p−1)) = 0,

so we have an isomorphism

Hi(Tot(σ≥−pX)) ∼−→ Hi(Tot(σ≥−p−1X))

and from the inductive hypothesis we conclude that Hi(Tot(σ≥−p−1X)) = 0. For the other
claim, we observe that the above long exact sequence induces the following short exact sequence:

0→ coker(s)→ Hi(Tot(σ≥−p−1X))→ ker(t)→ 0.

By the inductive hypothesis and since Q is hlc, s and t are maps between objects in mod(H0(Q)).
Also, since H0(Q) is coherent, both coker(s), ker(t) ∈ mod(H0(Q). Since mod(H0(Q)) is closed
under extensions, we deduce that Hi(Tot(σ≥−p−1X)) ∈ mod(H0(Q)), as claimed. □

The following is a key technical result which allows us to “resolve” objects by means of twisted
complexes. We write it down in some generality.

Proposition 5.13. Let D be a strongly pretriangulated dg-category; we identify it with its pre-
triangulated hull: pretr(D) = D. Assume that D has a t-structure (D≤0,D≥0). We denote as
usual with Hi(−) the i-th cohomology functor H0(D) → H0(D)♡; we shall write Hi(f) instead
of the more precise Hi([f ]), if [f ] is the cohomology class of a closed degree 0 morphism f .

Assume moreover there is a full dg-subcategory Q ⊆ D≤0 with cohomology concentrated in
nonpositive degrees. We recall that the inclusion Q ⊂ D induces a fully faithful dg-functor
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pretr(Q) ↪→ pretr(D) = D (see the properties of Ind in §4.4); the totalisation functor (4.24)
restricted to Tw−b (Q) induces a (quasi-fully faithful) dg-functor:

TQ : Tw−b (Q) Tot−−→ pretr(Q) ↪→ D. (5.6)
Moreover, assume that for any object A ∈ D− there is an object Q ∈ Q and a closed degree
0 morphism α : Q → A with the property that H0(α) : H0(Q) → H0(A) is an epimorphism in
H0(D)♡.

Fix A ∈ D≤M . There is a sequence (Qn)n≤M of objects of Q and a sequence (Xn)n≤M of
twisted complexes in Tw−b (Q) such that

XM = QM [−M ],
Xn−1 = C(Qn−1[−n]→ Xn),

for suitable closed degree 0 morphisms Qn−1[−n]→ Xn in Tw−b (Q), so that there are pretriangles
in D

Qn−1[−n]→ TQ(Xn) jn,n−1−−−−→ TQ(Xn−1)→ Qn−1[−n+ 1]
and Xn is concentrated in degrees between n and M :

Xn =
(

M⊕
k=n

Qk[−k], qXn

)
.

Also, TQ(Xn) ∈ D≤M for all n. Moreover, there exist closed degree 0 morphisms αn : TQ(Xn)→
A in D, such that the following diagram is (strictly) commutative:

TQ(Xn) αn //

jn,n−1

��

A

TQ(Xn−1),
αn−1

::

(5.7)

The morphism αn induces a map in H0(D)♡ for all i ∈ Z:
Hi(αn) : Hi(TQ(Xn))→ Hi(A)

which is an isomorphism for i > n and an epimorphism for i = n. Also the induced map
Hi(jn,n−1) : Hi(TQ(Xn))→ Hi(TQ(Xn−1))

is an isomorphism for i > n and an epimorphism for i = n.

Proof. Upon replacing A with a suitable shift, we assume that M = 0, so that A ∈ D≤0 and in
particular Hi(A) = 0 for all i < 0. We construct the sequences (Qn)n≥0 and (Xn)n≥0 inductively,
together with the maps αn : TQ(Xn) → A. For notational ease, we shall drop TD when taking
cohomology, writing for instance Hi(αn) : Hi(Xn)→ Hi(A).

Base step. By hypothesis, we can find a closed degree 0 map in D
α0 : Q0 → A, (5.8)

where Q0 ∈ Q ⊂ D≤0. Clearly, we have Q0 = TQ(X0), where X0 = (Q0, 0) = Q0 ∈ Tw−b (Q).
The map H0(α0) is an epimorphism by hypothesis, and Hi(α0) = 0 is an isomorphism for all
i < 0, since (again by hypothesis) both A and X0 have cohomology concentrated in nonpositive
degrees.

Inductive step. Assume we have the objects Qk, the twisted complexes Xk and the maps
αk : A→ Xk with the required properties for k ≥ n (n ≤ 0). Now, set

Cn = C(αn : TQ(Xn)→ A)[−1] ∈ D−.
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By hypothesis, we find a closed degree 0 map

Qn−1 → Cn[n]

which is an epimorphism in H0(D)♡ upon taking H0. Shifting, we find a closed degree 0 map

pn : Qn−1[−n]→ Cn

such that Hn(pn) : Hn(Qn−1[−n]) → Hn(Cn) is an epimorphism. Consider the following dia-
gram in D:

Qn−1[−n] βn //

pn

��

TQ(Xn)
jn,n−1

// TQ(Xn−1)

αn−1

��

Cn
// TQ(Xn) αn // A.

(5.9)

The morphism βn is defined as the composition making the left square (strictly) commute.
Now, by hypothesis Xn = (

⊕0
k=n Qk[−k], qXn) is concentrated in degrees between n and 0, and

Qn−1[−n] is concentrated in degree n as a twisted complex. Hence, the closed degree 0 map
βn necessarily comes from a unique one-sided morphism bn : Qn−1[n] → Xn in Tw−b (Q). By
definition, Xn−1 = C(Qn−1[−n] bn−→ Xn). It is the twisted complex defined by

Xn−1 = (Qn−1[−n+ 1]⊕Xn,
(

0 0
bn1(Qn−1,−n+1,−n) qXn

)
). (5.10)

We notice here that TQ(Xn−1) ∈ D≤0, since it is the cone of a map between objects in D≤0.
The morphism jn,n−1 is induced by the natural inclusion Xn → Xn−1. Next, notice that αn ◦βn

is 0 in the homotopy category (the rows of the above diagram induce distinguished triangles in
H0(D)), hence we can find a degree 0 morphism cn : Qn−1[−n+ 1]→ A such that

dcn − αnβn1(Qn−1,−n+1,−n) = 0.

So, we may define the closed degree 0 morphism αn−1 : TQ(Xn−1)→ A as

αn−1 = (cn, αn), (5.11)

and by construction this makes the right square of the above diagram (strictly) commute.
Next, consider the following diagram induced by (5.9) in cohomology (the rows are exact):

Hi(Qn−1[−n]) //

Hi(pn)
��

Hi(Xn)
Hi(jn,n−1)

// Hi(Xn−1) //

Hi(αn−1)
��

Hi+1(Qn−1[−n]) // Hi+1(Xn)

Hi(Cn) // Hi(Xn)
Hi(αn)

// Hi(A) // Hi+1(Cn) // Hi+1(Xn).

Since Hi(αn) is an isomorphism for i > n and Hn(αn) is an epimorphism, we deduce by exactness
of the lower row that Hi(Cn) ∼= 0 for all i > n. Next, observe that Hi(Qn−1[−n]) ∼= 0 for all
i > n, since the objects in Q have cohomology concentrated in nonpositive degrees; notice that
this implies that Hi(jn,n−1) is an isomorphism for i > n and a monomorphism for i = n, as
required. Moreover, Hi(jn) = 0 is trivially an isomorphism for i > n, and recall that Hn(jn)
is an epimorphism by construction. So, we easily deduce (for example, using the Five Lemma)
that Hi(αn−1) is an isomorphism for all i ≥ n.
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In order to show that Hn−1(αn−1) is an epimorphism, consider the following diagram:

Hn−1(Xn) // Hn−1(Xn−1) //

Hn−1(αn−1)
��

Hn(Qn−1[−n]) //

Hn(pn)
����

Hn(Xn)

Hn−1(Xn) // Hn−1(A) // Hn(Cn) // Hn(Xn).

We can now conclude by the version of the 5-lemma recalled in Lemma 5.14. □

Lemma 5.14. Consider the following commutative diagram in any abelian category:

A
α // B

β
//

f

��

C
γ
//

g
����

D

A
α′
// B′

β′
// C ′

γ′
// D.

Assume that the rows are exact and that g is a epimorphims. Then, f is an epimorphism.

Remark 5.15. The above proof, with the suitable changes, applies to a more general setting where
we are given a cohomological functor H0 : H0(D)→ A with values in any abelian category (not
necessarily coming from a t-structure on D) and a full dg-subcategory Q ⊂ D concentrated in
nonpositive degrees such that Hi(Q) = 0 for any i > 0 and Q ∈ Q. In that case, we may resolve
any A ∈ D such that Hi(A) = 0 for i > M with a sequence of twisted complexes (Xn) of objects
of Q such that Hi(Xn) = 0 for all i > M . We won’t need the result in such a generality, and we
leave this to the interested reader.

In the case where D has a non-degenerate right bounded t-structure which is closed under
countable coproducts (Definition 3.8), we may actually reconstruct any object A ∈ D− = D as
the homotopy colimit of its resolution.

Corollary 5.16. In the setting of the above Proposition 5.13, assume that D has a non-
degenerate right bounded t-structure which is closed under countable coproducts (Definition 3.8).
The object A ∈ D≤M , with the maps αM−p : TQ(XM−p) → A and the “trivial homotopies”
hM−p = 0: TQ(XM−p) → A, is the homotopy colimit of the sequence (TQ(XM−p) jM−p,M−p−1−−−−−−−−→
TQ(XM−p−1))p. Namely, the induced morphism (recall Remark 3.4)

holim←−
p

(α∗M−p, 0) : D(A,−)→ holim←−
p

D(TQ(XM−p),−) (5.12)

is an isomorphism in D(Dop). In particular, any A ∈ D can be reconstructed as a homotopy
colimit as above.

Proof. Upon shifting, assume M = 0. First, we notice that holim←−p
(α∗−p, 0) is well defined, since

(5.7) is strictly commutative. By hypothesis, the aisle H0(D)≤0 is closed under countable co-
products and TQ(X−p) ∈ D≤0 for all p; hence, by Lemma 3.5, we know that (TQ(X−p) j−p,−p−1−−−−−−→
TQ(X−p−1))p admits a homotopy colimit holim−→p

TQ(X−p) in D. Namely, we have closed degree
0 maps j−p : TQ(X−p)→ holim−→p

TQ(X−p) and homotopies h−p which induce an isomorphism in
D(Dop):

holim←−
p

(j∗−p, h
∗
−p) : D(holim−→

p

TQ(X−p),−)→ holim←−
p

D(TQ(X−p),−).
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By the universal property (3.9), we find a closed degree 0 map α : holim−→p
TQ(X−p) → A such

that the following diagram is commutative in D(Dop):

D(A,−)
holim←−n

(α∗
−p,0)

//

α∗

��

holim←−n
D(TQ(X−p),−)

D(holim−→p
TQ(X−p),−),

holim←−n
(j∗

n,h∗
n)

44

and moreover [α][j−p] = [α−p] in H0(D). Now, we know from the above Proposition 5.13 that
both Hi(j−p,−p−1) and Hi(α−p) are isomorphisms for i > −p and epimorphisms for i = p. So, we
may apply Corollary 3.11 and find that [α] : holim−→p

TQ(X−p)→ A is an isomorphism in H0(D).
Hence, α∗ : D(A,−) → D(holim−→p

TQ(X−p),−) is an isomorphism in D(Dop), and we conclude
that holim←−p

(α∗−p, 0) is also an isomorphism in D(Dop), as claimed. □

Finally, we prove the essential surjectivity of H0(Tot) : H0(Tw−(Q)) → H0(h-proj−(Q)hfp),
which completes the proof of Theorem 5.9:

Proposition 5.17. Let Q be a hlc dg-category, and let M ∈ h-proj−(Q)hfp. Then, there exists
X ∈ Tw−(Q) such that Tot(X) ∼= M in H0(h-proj(Q)).

Proof. It is sufficient to show that there exist X ∈ Tw−(Q) and a quasi-isomorphism Tot(X)→
M , for both Tot(Y ) and M are h-projective. We recall Lemma 5.10 and we apply Proposition
5.13 with:

• D = h-proj−(Q)hfp, which is a strongly pretriangulated full dg-subcategory of h-proj(Q)
and has a t-structure (Lemma 5.11).
• Q = Q viewed as a full subcategory of h-proj−(Q)hfp via the Yoneda embedding.

Notice that D = D−, and the dg-functor TQ : Tw−b (Q) → D is precisely the totalisation
Tot: Tw−b (Q) → h-proj−(Q)hfp. The above data satisfy the hypotheses of Proposition 5.13:
Q is cohomologically concentrated in negative degrees, it lies in the aisle h-proj−(Q)hfp

≤0 , and
every N ∈ D is such that H0(N) ∈ mod(H0(Q)) is finitely generated, so that we have an
epimorphism

H0(Q(−, B))→ H0(N),
and by the Yoneda Lemma this is induced by a closed degree 0 morphism Q(−, B)→ N .

Now, for simplicity, assume that Hi(M) = 0 for all i > 0. By Proposition 5.13, we find a
sequence (X−p)p≥0 of twisted complexes and maps α−p : Tot(X−p)→M such that the diagram

Tot(X−p)
α−p

//

j−p,−p−1

��

M

Tot(X−p−1)
α−p−1
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is (strictly) commutative in D.
We may apply Proposition 4.14 and find X ∈ Tw−(Q) and such that X−p = σ≥−pX. We

know from Proposition 4.11 that Tot(X) together with the natural inclusions j−p : Tot(X−p)→
Tot(X) is the colimit of the sequence (Tot(X−p) j−p,−p−1−−−−−−→ Tot(X−p−1))p, so the maps α−p induce
a map α : Tot(X)→M such that α ◦ j−p = α−p. Given i ∈ Z, these relations give in particular
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commutative diagrams:

Hi(Tot(σ≥−pX))
Hi(α−p)

//

Hi(j−p)
��

Hi(M)

Hi(Tot(X)).
Hi(α)

77

Now, choose any p such that i > −p. we know from Lemma 4.16 that Hi(j−p) is an isomorphism.
Moreover, we know from Proposition 5.13 that Hi(α−p) is also an isomorphism. Hence, Hi(α)
is an isomorphism; since i ∈ Z is arbitrary, we conclude that α : Tot(X) → M is a quasi-
isomorphism, as claimed. □

6. Derived projectives and injectives

6.1. Basic definitions and properties.
Definition 6.1 ([19, §5.1]). Let T be a triangulated category with t-structure, and as usual
denote

H0 = τ≤0τ≥0 : T→ T♡.
(1) Assume that for all projectives P ∈ Proj(T♡) in the heart the cohomological functor

T♡(P,H0(−)) : T→ Mod(k) is corepresentable:
T♡(P,H0(−)) ∼= T(S(P ),−).

We say that S(P ) is the derived projective associated to P . In this case, we also say that
T has derived projectives. If A is a pretriangulated dg-category such that H0(A) has a
t-structure, we shall say that A has derived projectives if H0(A) has this property.

(2) Dually, assume that for all injectives I ∈ Inj(T♡) in the heart, the cohomological functor
T♡(H0(−), I) : Top → Mod(k) is representable:

T♡(H0(−), I) ∼= T(−, L(I)).
We say that L(I) ∈ T is the derived injective associated to I. In this case, we also say
that T has derived injectives. If A is a pretriangulated dg-category such that H0(A)
has a t-structure, we shall say that A has derived injectives if H0(A) has this property.

Remark 6.2. Derived injectives over non-positively graded dg-algebras, with respect to the stan-
dard t-structure, have been investigated in [20].

We now sum up from [19, §5.1] some basic properties of derived injectives and projectives:
Proposition 6.3. Let T be a triangulated category with t-structure.

(1) Assume that T has derived projectives as in Definition 6.1 part 1. Then, for any P ∈
Proj(T♡), we have:

S(P ) ∈ T≤0, (6.1)
H0(S(P )) ∼= P. (6.2)

If Q ∈ Inj(T♡) is another projective, we have

T(S(P ), S(Q)[i]) ∼=

{
T♡(P,Q) if i = 0,
0 if i > 0,

(6.3)

for i ∈ Z. In particular, S : Proj(T♡) → T, P 7→ S(P ) defines a fully faithful functor.
Its essential image, which is the full subcategory of derived projectives of T, is denoted
by DGProj(T). If T = H0(A) for some dg-category A, we simplify notation and write
DGProj(H0(A)) = DGProj(A), viewing it as a full dg-subcategory of A.
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(2) Dually, assume that T has derived injectives as in Definition 6.1 part 2. Then, for any
I ∈ Inj(T♡), we have:

L(I) ∈ T≥0, (6.4)
H0(L(I)) ∼= I. (6.5)

If J ∈ Inj(T♡) is another injective, we have

T(L(I), L(J)[i]) ∼=

{
T♡(I, J) if i = 0,
0 if i > 0,

(6.6)

for i ∈ Z. In particular, L : Inj(T♡) → T, I 7→ L(I) defines a fully faithful functor.
Its essential image, which is the full subcategory of derived injectives of T, is denoted
by DGInj(T). If T = H0(A) for some dg-category A, we simplify notation and write
DGInj(H0(A)) = DGInj(A), viewing it as a full dg-subcategory of A.

Remark 6.4. If T has derived projectives as in Definition 6.1 part 2, then the same is true for
T− and DGProj(T−) = DGProj(T). This follows immediately from the fact that (T−)♡ = T♡
and the fact that S(P ) ∈ T− for all injectives P ∈ Proj(T♡). Dually, if T has derived injectives
as in Definition 6.1 part 1, then the same is true for T+ and DGProj(T+) = DGProj(T).

Remark 6.5. Assume that T has derived projectives, and let {Pi : i ∈ I} be a family of objects
in Proj(T♡) such that P =

⊕
i Pi exists in T. Then, H0(P ) is a coproduct of the Pi in T♡ and

in particular is in Proj(T♡). To see this, first note that
⊕

i Pi ∈ T≤0, because

T(
⊕

i

Pi, Y ) ∼=
∏

i

T(Pi, Y ) = 0,

for all Y ∈ T≥1, since Pi ∈ T♡ ⊆ T≤0. Then, for all A ∈ T♡ we have:∏
i

T♡(Pi, A) ∼= T(P,A)

∼= T(τ≥0(P ), A)
∼= T♡(H0(P ), A),

naturally in A. Being a coproduct of projectives in T♡, the object H0(P ) is itself projective.
Moreover, we have

T(S(H0(P )), X) ∼= T♡(H0(P ), H0(X))
∼=
∏

i

T♡(Pi, H
0(X))

∼=
∏

i

T(S(Pi), X)

∼= T(
⊕

i

S(Pi), X),

naturally in X ∈ T. We deduce that S(H0(P )) ∼=
⊕

i S(Pi); in other words, S(−) commutes
with coproducts. Dually, one can prove that L(−) commutes with direct products if T has
derived injectives.

Derived injectives or projectives can be used to make resolutions of objects of triangulated
categories with t-structures, much like projectives are used to resolve objects in abelian categories.
The starting point for this is the following definition:
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Definition 6.6. Let T be a triangulated category with t-structure. We say that T has enough
derived projectives if T has derived projectives as in Definition 6.1 and moreover the heart T♡
has enough projectives. Dually, we say that T has enough derived injectives if T has derived
injectives and T♡ has enough injectives.

If A is a pretriangulated dg-category with a t-structure, we say that A has enough derived
projectives (or injectives) if H0(A) has this property.

Remark 6.7. If T has enough derived projectives, then for any given A ∈ T we can find a
projective P ∈ Proj(T♡) and an epimorphism α : P ↠ H0(A). From this, directly applying the
definition, we find a morphism α : S(P ) → A in T such that H0(α) is identified with α via the
isomosphism H0(S(P )) ∼= P .

In the following example, we explicitly characterise the derived projectives of h-proj(Q)hfp.

Example 6.8. Let Q be a hlc dg-category such that H0(Q) is Karoubian. Then, we know from
Theorem 5.9 that the triangulated categories D(Q)hfp and D−(Q)hfp have natural t-structures
with the same heart given by mod(H0(Q)). By [17, Proposition A.14], we know that the projec-
tives of mod(H0(Q)) are precisely given by (the essential image of) H0(Q), namely the modules
isomorphic to the representables H0(Q)(−, A) for some A ∈ Q. By the Yoneda lemma, we have
for all M ∈ h-proj(Q)hfp:

mod(H0(Q))(H0(Q)(−, A), H0(M)) ∼= H0(M)(A)
∼= D(Q)(Q(−, A),M)

We conclude that DGProj(h-proj(Q)hfp) is precisely given by the dg-modules isomorphic in
H0(h-proj(Q)) to the representable dg-modules. The same is true for DGProj(h-proj−(Q)hfp)
by Remark 6.4. A little more precisely, we have that the Yoneda embedding Q ↪→ h-proj−(Q)hfp

induces a quasi-equivalence

Q ≈−→ DGProj(h-proj−(Q)hfp) = DGProj(h-proj(Q)hfp). (6.7)

Since Tw−(Q) is quasi-equivalent to h-proj−(Q)hfp via the totalisation functor, we also deduce
that DGProj(Tw−(Q)) is the closure in H0(Tw−(Q)) of the objects of the form Q = (Q, 0) ∈
Tw−(Q).

The following lemma is an improvement of Lemma 5.10.

Lemma 6.9. Let Q be a hlc dg-category such that H0(Q) is Karoubian. Then, the full dg-
subcategory h-proj(Q)hfp of h-proj(Q) defined in (5.1) has enough derived projectives. Moreover,
if H0(Q) is closed under countable coproducts, then the same is true for H0(h-proj(Q)hfp)

Proof. Clearly the homotopy category of h-proj(Q)hfp is equivalent to the triangulated category
D(Q)hfp (defined in (5.2)), and from Theorem 5.9 we know that it has a t-structure induced
from D(Q) with heart mod(H0(Q)). Since H0(Q) is Karoubian, we know that the representable
H0(Q)-modules are precisely the projectives of the heart mod(H0(Q)), and by the above Example
6.8 we know that for every projective H0(Q)(−, A) the associated derived projective is Q(−, A).
Moreover, the heart mod(H0(Q)) has enough projectives, hence by definition h-proj(Q)hfp has
enough derived projectives.

Next, we assume that H0(Q) has countable coproducts, and we show that the same is true
for D(Q)hfp. Let (Mj)j∈J be a countable family of objects there. Then, for all i ∈ Z, we have
projective presentations

H0(Q)(−, Aj)→ H0(Q)(−, Bj)→ Hi(Mj).
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Taking direct sums in D(Q) we find an exact sequence:⊕
j∈J

H0(Q)(−, Aj)→
⊕
j∈J

H0(Q)(−, Bj)→
⊕
j∈J

Hi(Mj) ∼= Hi(
⊕
j∈J

Mj).

By hypothesis, ⊕jH
0(Q)(−, Aj) and ⊕jH

0(Q)(−, Bj) are representable (say, respectively by
objects A and B in H0(Q)) and we get an exact sequence:

H0(Q)(−, A)→ H0(Q)(−, B)→ Hi(
⊕
j∈J

Mj),

namely Hi(M) ∈ mod(H0(Q)), as desired. □

For a given dg-category, the property of being homotopically locally coherent and with
Karoubian H0 is precisely what makes it a “dg-category of derived projectives of a dg-category
with enough derived projectives”, in virtue of Example 6.8 and the following result:

Lemma 6.10. Let A be a pretriangulated dg-category with a t-structure and enough derived
projectives. Then, the dg-category DGProj(A) is hlc and H0(DGProj(A)) is Karoubian.

Moreover, if the t-structure on A is closed under countable direct sums (Definition 3.8), then
the coproduct

⊕
i S(Pi) in H0(A)≤0 of any countable collection of objects in H0(DGProj(A))

lies in H0(DGProj(A)). In particular, H0(DGProj(A)) is closed under countable direct sums.

Proof. For simplicity, set Q = DGProj(A). We know that S(−) : Proj(H0(A)♡) → H0(Q) is
an equivalence, hence H0(Q) is additive, coherent and Karoubian since Proj(H0(A)♡) is such
(by the dual of [17, Remark A.13]. To go on to show that Q is hlc, we let Q ∈ Q and consider
Hi(Q(S(P ), Q)) for any given projective P in the heart. We have:

Hi(Q(S(P ), Q)) ∼= H0(A(S(P ), Q[i]))
∼= H0(A)♡(P,Hi(Q)).

Next, consider a projective presentation of Hi(Q), which exists since H0(A)♡ has enough pro-
jectives:

P1 → P0 → Hi(Q)→ 0.
Since P is projective, we get an exact sequence

H0(A)♡(P, P1)→ H0(A)♡(P, P0)→ H0(A)♡(P,Hi(Q))→ 0.

Next, recalling that S(−) : Proj(H0(A)♡)→ H0(Q) is an equivalence, we get an exact sequence:

H0(Q)(S(P ), S(P1))→ H0(Q)(S(P ), S(P0))→ Hi(Q(S(P ), Q))→ 0.

This sequence is natural in P , hence also in S(P ) ∈ H0(Q), since S(−) is fully faithful. We
conclude that Hi(Q(−, Q)) is finitely presented, as desired.

Finally, the second part of the claim follows from Remark 6.5. Indeed, the coproduct
⊕

i Pi

exists in H0(A)≤0 since this aisle is closed under direct sums, and then we have that

S(H0(P )) ∼=
⊕

i

S(Pi) ∈ H0(Q). □

6.2. Functors preserving derived injectives or projectives. In this part we give sufficient
conditions in order that a given exact functor F : T→ S between categories which have derived
projectives or injectives actually preserves the subcategories of derived projectives or injectives.
To this purpose, we start by investigating the behaviour of adjoints with respect to t-structures.
Recall that F is right (left) t-exact if F (S≤0) ⊂ T≤0 (F (S≥0) ⊂ T≥0) holds. Furthemore we say
that F is t-exact if it is both left and right t-exact. We recall the following standard result.
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Lemma 6.11. Assume we are given an adjunction F ⊣ G : T ⇆ S of exact functors between
triangulated categories with t-structures. Then F is right t-exact if and only if G left t-exact.

Proof. Assume that G(S≥0) ⊆ T≥0. Playing with shifts, we notice that this implies that
G(S≥n) ⊆ T≥n for all n ∈ Z. Now, let A ∈ T≤0. Recall that F (A) ∈ S≤0 is equivalent
to

S(F (A), B) = 0, ∀B ∈ S>0.

On the other hand, for any B ∈ S>0, we have

S(F (A), B) ∼= T(A,G(B)) ∼= 0,

since by hypothesis G(B) ∈ T>0. The other implication is proved in the same fashion. □

Any exact functor F : T → S between triangulated categories with t-structures induces a
functor between the hearts:

F♡ : T♡ → S♡,
A 7→ H0(F (A)) = τ≤0τ≥0F (A).

(6.8)

This formula simplifies to τ≥0F (A) (τ≤0F (A)) is F if right (left) t-exact (in which case F♡ :
T♡ → S♡ is right (left) exact) and to A 7→ F (A) if F is t-exact (in which case F♡ is exact).

Lemma 6.12. Assume we are given an adjunction

F ⊣ G : T ⇆ S

of exact functors between triangulated categories with t-structures. Then, if F is right t-exact (or
equivalently G is left t-exact) then the above adjunction induces an adjunction

F♡ ⊣ G♡ : T♡ ⇆ S♡

of the functors induced between the hearts.

Proof. We may compute, for any A ∈ T♡ and B ∈ S♡:

S♡(F♡(A), B) ∼= S♡(τ≥0F (A), B) (F is right t-exact)
∼= S(F (A), B) (B ∈ S♡ ⊆ S≥0)
∼= T(A,G(B))
∼= T(A, τ≤0G(B)) (A ∈ T♡ ⊆ T≤0)
∼= T♡(A,G♡(B)) (G is left t-exact). □

It is well known that a functor between abelian categories preserves projectives whenever it
has an exact right adjoint. A similar result is true in the framework of t-structures and derived
projectives and injectives:

Proposition 6.13. Let F : T → S be an exact functor between triangulated categories with
t-structures. If T and S have derived projectives and F has a t-exact right adjoint G then F
preserves the derived projectives, namely it restricts to a functor

F |DGProj(T) : DGProj(T)→ DGProj(S).

Dually, if T and S have derived injectives and F has a t-exact left adjoint G′, then F preserves
the derived injectives, namely it restricts to a functor

F |DGInj(T) : DGInj(T)→ DGInj(S).



T-STRUCTURES AND TWISTED COMPLEXES ON DERIVED INJECTIVES 40

Proof. We prove the statement about derived projectives, the other one being dual. Let S(P ) ∈
DGProj(T) be a fixed derived projective, associated to some P ∈ Proj(T♡). We are going to
prove that F (S(P )) ∼= S(F♡(P )). For any B ∈ S, we have:

S(S(F♡(P )), B) = S♡(F♡(P ), H0(B))
∼= T♡(P,G♡(H0(B))) (F♡ ⊣ G♡)
∼= T♡(P,H0(G(B))) (G is t-exact, hence G♡ ◦H0 ∼= H0 ◦G)
∼= T(S(P ), G(B))
∼= T(F (S(P )), B).

We applied the above Lemma 6.12 and the fact that F♡(P ) is projective since P ∈ Proj(T♡)
and F♡ has an exact right adjoint G♡. □

7. The (re)construction

The results of the previous sections (see Theorem 5.9, Lemma 6.9, Example 6.8, see also
Remark 3.13) are summarized in the following theorem which provides a method for constructing
triangulated categories with a t-structure and with enough derived projectives.

Theorem 7.1 (Construction). Let Q be a hlc dg-category such that H0(Q) is Karoubian. Then,
the dg-category h-proj(Q)hfp defined by

h-proj(Q)hfp = {M ∈ h-proj(Q) : Hi(M) ∈ mod(H0(Q)) ∀ i}

has a non-degenerate t-structure whose heart is the category mod(H0(Q)), has enough derived
projectives, and DGProj(h-proj(Q)hfp) is the closure of Q ↪→ h-proj(Q)hfp under isomorphisms
in H0(h-proj(Q)hfp); also, H0(h-proj(Q)hfp) is closed under countable copruducts if H0(Q) is.
Moreover, the totalisation dg-functor induces a quasi-equivalence:

Tot: Tw−(Q)→ h-proj−(Q)hfp.

In particular, Tw−(Q) has a non-degenerate right bounded t-structure. This t-structure is closed
under countable coproducts (Definition 3.8) if H0(Q) is closed under countable coproducts.

A natural question is whether the above Theorem 7.1 can be “inverted”. Namely, given a
pretriangulated category A with a non-degenerate right bounded t-structure with enough derived
projectives, can we reconstruct A− as Tw−(DGProj(A))? Theorem 7.2 below provides positive
answers to these question, provided that we also assume closure under countable coproducts.

7.1. Reconstruction. We fix a pretriangulated dg-category A with a non-degenerate right
bounded t-structure, with enough derived projectives, and which is closed under countable co-
products. Let Q = DGProj(A), and let j : Q ↪→ A be the inclusion. We can compose the Yoneda
embedding A ↪→ h-proj(A) with the restriction quasi-functor Resj : h-proj(A)→ h-proj(Q) (re-
call (4.28)), hence obtaining a quasi-functor

A→ h-proj(Q), (7.1)

which in H0 gives the following exact functor between triangulated categories:

H0(A)→ D(Q),
A 7→ A(j(−), A).

(7.2)

Notice that Q is hlc and its H0 is Karoubian by Lemma 6.10, so Tw−(Q) is quasi-equivalent to
h-proj−(Q)hfp by the above Theorem 7.1. The key result we are going to show is the following:
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Theorem 7.2 (Reconstruction). Let A be a pretriangulated dg-category with a non-degenerate,
right bounded t-structure with enough derived projectives, and which is closed under countable
coproducts. Let Q = DGProj(A). The quasi-functor (7.1)

A− → h-proj(Q)

is t-exact and induces an isomorphism in the homotopy category Hqe between the dg-categories
A− and h-proj−(Q)hfp ≈ Tw−(Q).

7.2. Theorem 7.2: preparations. The proof of Theorem 7.2 is achieved by applying Proposi-
tion 5.13 in order to resolve A ∈ A with a sequence of twisted complexes of derived projectives.
Before going on with the actual proof, we take care of the setting and the preparatory results.

We fix a pretriangulated dg-category A with a non-degenerate right bounded t-structure
with enough derived projectives, which is closed under countable coproducts (so that the aisles
H0(A)≤M are closed under countable coproducts). We set Q = DGProj(A), which is a hlc
dg-category such that H0(Q) is Karoubian. Moreover, Q ⊆ A≤0.

• We can assume that A is strongly pretriangulated, by replacing and identifying it with
its pretriangulated hull: pretr(A) = A.
• Consider the inclusion dg-functor j : Q → A. Since A is strongly pretriangulated, we

have an induced fully faithful dg-functor j′ : pretr(Q) ↪→ A. Recalling the properties of
Ind in §4.4, we know that the restriction along the natural embedding Q ↪→ pretr(Q)
induces a dg-equivalence

Cdg(pretr(Q)) ∼−→ Cdg(Q), (7.3)

which gives also an equivalence between the derived categories:

D(pretr(Q)) ∼−→ D(Q). (7.4)

Clearly, this equivalence maps

A(j′(−), A) 7→ A(j(−), A), (7.5)

for all A ∈ A.
• Recalling (4.24), the totalisation dg-functor TotQ restricts to a dg-functor

TotQ : Tw−b (Q)→ pretr(Q),

and composing with j′ : pretr(Q) ↪→ A, we get a dg-functor (recall also (5.6))

TQ : Tw−b (Q)→ A

with the property that for all Y ∈ Tw−b (Q) we have an isomorphism

TotQ(Y ) ∼= A(j(−), TQ(Y )), (7.6)

in Cdg(Q), natural in Y .

Lemma 7.3. Choose an inverse S−1 of the equivalence S(−) : Proj(H0(A)♡) → DGProj(A),
and let A ∈ A. For all i ∈ Z, we have an isomorphism

Hi(A(j(−), A)) ∼= H0(A)♡(S−1(−), Hi(A)). (7.7)

In particular, the functor

H0(A)→ D(Q),
A 7→ A(j(−), A)

(7.8)

is t-exact.
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Proof. The isomorphism (7.7) follows from the very definition of derived projectives. t-exactness
now follows from the fact that the t-structure on D(Q) is non-degenerate. Indeed, let A ∈
H0(A)≤n. By (3.13), we know that Hi(A) = 0 for all i > n. Thanks to (7.7), we find out that
Hi(A(j(−), A)) = 0 for i > n, and this means that A(j(−), A) ∈ D(Q)≤n. A similar argument
shows that H0(A)≥n is mapped to D(Q)≥n. □

Remark 7.4. The functor induced by the above (7.8) between the hearts is precisely

H0(A)♡ → Mod(H0(Q)),
A 7→ H0(A)♡(S−1(−), A).

(7.9)

This is proven in [17, Proposition 6.25] to induce an equivalence betweenH0(A)♡ and mod(H0(Q)).
That result will follow from the proof of Theorem 7.2.

Lemma 7.5. Let A ∈ A≤M . Then, there is a sequence (XM−p → XM−p−1)p≥0 in Tw−b (Q), with
TQ(XM−p) ∈ A≤M , and closed degree 0 maps αM−p : TQ(XM−p)→ A such that the diagram

TQ(XM−p)
αM−p

//

jM−p,M−p−1

��

A

TQ(XM−p−1)
αM−p−1
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is strictly commutative in A, and

holim←−
p

(α∗M−p, 0) : A(A,−)→ holim←−
p

A(TQ(XM−p),−) (7.10)

is an isomorphism in D(Aop). In other words, A together with the maps αM−p is the homotopy
colimit of (TQ(XM−p) jM−p,M−p−1−−−−−−−−→ TQ(XM−p−1))p.

Proof. Proposition 5.13, Corollary 5.16. □

Lemma 7.6. Let A ∈ A≤M , and consider the sequence (XM−p → XM−p−1)p and the maps
αM−p : TQ(XM−p) → A given by Lemma 7.5. There exists X ∈ Tw−(Q) such that σ≥M−pX =
XM−p, and the morphisms

(αM−p)∗ : TotQ(XM−p) ∼= A(j(−), TQ(XM−p))→ A(j(−), A)

induce a closed degree 0 morphism in Cdg(Q)

TotQ(X)→ A(j(−), A) (7.11)

which is an isomorphism in D(Q). Moreover, the induced morphism (recall (3.7))

holim−→
p

((αM−p)∗, 0) : holim−→
p

A(j′(−), TQ(XM−p))→ A(j′(−), A) (7.12)

is an isomorphism in D(pretr(Q)).

Proof. Upon shifting, assume M = 0. The sequence (X−p → X−p−1)p is constructed using
Proposition 5.13, so Proposition 4.14 is applicable and gives X ∈ Tw−(Q) such that σ−pX =
X−p, and moreover

TotQ(X) ∼= lim−→
p

TotQ(X−p) ≈ holim−→
p

TotQ(X−p).
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Thanks to the commutative diagram (4.23), the equivalence (7.3) and the isomorphism (7.6),
we only need to check that (7.11) is a quasi-isomorphism. Let i ∈ Z and recall Lemma 4.16:
Hi(TotQ(X−p))→ Hi(TotQ(X)) is an isomorphism for −p < i, so it is enough to prove that

Hi(TotQ(X−p)) ∼= Hi(A(j(−), TQ(X−p))) Hi((α−p)∗)−−−−−−−→ Hi(A(j(−), A))

is an isomorphism for −p < i. Thanks to (7.7), this is equivalent to proving that

H0(A)♡(S−1(−), Hi(TQ(X−p))) Hi(α−p)∗−−−−−−→ H0(A)♡(S−1(−), Hi(A))

is an isomorphism for −p < i. This follows from Proposition 5.13, where we prove that

Hi(α−p) : Hi(TQ(X−p))→ Hi(A)

is an isomorphism for −p < i. □

7.3. Theorem 7.2: proof. In order to prove Theorem 7.2, it is enough to show that the functor
(7.2)

H0(A)→ D(Q),
A 7→ A(j(−), A)

is fully faithful and its essential image is D−(Q)hfp ∼= H0(h-proj−(Q)hfp), since t-exactness
follows from Lemma 7.3.

Fully faithfulness. Since pretr(Q) ↪→ A and D(pretr(Q)) ∼= D(Q) via the restriction dg-functor,
fully faithfulness of (7.2) is equivalent to fully faithfulness of

H0(A)→ D(pretr(Q)),
A 7→ A(j′(−), A).

(7.13)

We compute, given A,B ∈ A (assuming for simplicity that Hi(A) = 0 for all i > 0):

A(A,B)
qis
≈ holim←−

p

A(TQ(X−p), B) (from (7.10))

∼= holim←−
p

Cdg(pretr(Q))(A(j′(−), TQ(X−p)),A(j′(−), B)) (Yoneda)

∼= Cdg(pretr(Q))(holim−→
p

A(j′(−), TQ(X−p)),A(j′(−), B)) (from (3.5)).

Hence:

H0(A(A,B)) ∼= K(pretr(Q))(holim−→
p

A(j′(−), TQ(X−p)),A(j′(−), B))

∼= D(pretr(Q))(holim−→
p

A(j′(−), TQ(X−p)),A(j′(−), B)) (∗)

∼= D(pretr(Q))(A(j′(−), A),A(j′(−), B)). (from (7.12))

The isomorphism (∗) follows from (2.2) because

holim−→
p

A(j′(−), TQ(X−p)) = holim−→
p

A(j′(−), j′(TotQ(X−p))

∼= holim−→
p

pretr(Q)(−,TotQ(X−p))

is h-projective, being a homotopy colimit of representables (hence h-projectives). □
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Essential image. Recall from Theorem 7.1 that the totalisation functor TotQ induces an equiv-
alence H0(Tw−(Q)) ∼= D−(Q)hfp, so it is enough to prove that the essential image of (7.2)
coincides with the objects of the form TotQ(X) ∈ D−(Q)hfp, for some X ∈ Tw−(Q).

Given A ∈ A, we know from Lemma 7.6 that A(j(−), A) is isomorphic to TotQ(X) in D(Q),
for some X ∈ Tw−(Q), hence the essential image of (7.2) is contained in D−(Q)hfp.

On the other hand, take an object TotQ(X) ∈ D−(Q)hfp, for some X ∈ Tw−(Q). Upon
shifting, we may assume that X is of the form

X = (
⊕
h≤0

Qh[−h], q).

By Lemma 5.12, we know that TotQ(X) ∈ D(Q)≤0. Let X−p = σ≥−pX and consider the
sequence (TotQ(X−p)→ TotQ(X−p−1))p (recall §4.3). This clearly gives a sequence in A:

(TQ(X−p) j−p,−p−1−−−−−−→ TQ(X−p−1))p

We claim that TQ(X−p) ∈ A≤0 for all p. Indeed, we have that TQ(X0) = X0 ∈ Q ⊆ A≤0, and
then there is a pretriangle

Q−p−1[p]→ TQ(X−p) j−p,−p−1−−−−−−→ TQ(X−p−1)→ Q−p−1[p+ 1],

from where we see that, assuming inductively that TQ(X−p) ∈ A≤0, we get TQ(X−p−1) ∈ A≤0.
Now, the sequence (TotQ(X−p)→ TotQ(X−p−1))p is isomorphic (recall (7.6)) to

(A(j(−), TQ(X−p)) (j−p,−p−1)∗−−−−−−−−→ A(j(−), TQ(X−p))p.

By Proposition 4.13, we know that

TotQ(X) ≈ holim−→
p

TotQ(X−p) ∼= holim−→
p

A(j(−), TQ(X−p)).

Now, set
A = holim−→

p

TQ(X−p),

which lies in A≤0 by Remark 3.12, and comes with closed degree 0 maps

j−p : TQ(X−p)→ A

such that [j−p−1] = [j−p,−p−1 ◦ j−p] in H0(A). In particular, the diagram

A(j(−), TQ(X−p))
(j−p)∗

//

(j−p,−p−1)∗

��

A(j(−), A)

A(j(−), TQ(X−p−1))
(j−p−1)∗

55

is commutative in D(Q), and recalling the “weak universal property” of the homotopy colimit
(see §3.1) we get a morphism in D(Q):

TotQ(X)→ A(j(−), A)

and for all i a commutative diagram

Hi(TotQ(X)) // Hi(A(j(−), A))

Hi(j(−), TQ(X−p)).

OO

Hi((j−p)∗)

55
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Now, fix i ∈ Z and recall from Lemma 4.16 that
Hi(TotQ(X−p)) ∼= Hi(A(j(−), TQ(X−p))→ Hi(TotQ(X))

is an isomorphism if i > −p. Moreover, by (7.7) the map Hi((j−p)∗) can be identified with

H0(A)♡(S−1(−), Hi(TQ(X−p))) Hi(j−p)∗−−−−−−→ H0(A)♡(S−1(−), Hi(A))
So, in order to show that Hi(TotQ(X)) → Hi(A(j(−), A)) is an isomorphism, it is now

sufficient to show that Hi(TQ(X−p))→ Hi(A) is an isomorphism if i > −p. The idea is to show
that

Hi(TQ(X−p))→ Hi(TQ(X−p−1))
is an isomorphism for i > −p and an epimorphism for i = p, and then apply Lemma 3.10 (see
also Remark 3.13). In fact, we may apply TQ : Tw−b (Q)→ A to the pretriangle (4.18), obtaining
a pretriangle in A:

TQ(Q−p−1)[p]→ TQ(X−p)→ TQ(X−p−1)→ TQ(Q−p−1)[p+ 1].
Notice that TQ(Q−p−1) = Q−p−1 ∈ Q ⊂ A, and it has cohomology concentrated in nonpositive
degrees. Hence, applying the t-structure cohomology of A and arguing as in the proof of Lemma
4.16, we see that Hi(TQ(X−p))→ Hi(TQ(X−p−1)) is indeed an isomorphism for i > −p and an
epimorphism for i = p. Putting everything together, we conclude that

TotQ(X)→ A(j(−), A)
is an isomorphism in D(Q).

7.4. The correspondence. Theorems 7.1 and 7.2 tell us that the dg-categories of the form
Tw−(Q) when Q is a hlc dg-category such that H0(Q) is Karoubian and closed under count-
able coproducts are precisely the dg-categories A is any dg-category with a non-degenerate right
bounded t-structure with enough derived projectives and which is closed under countable co-
products. This correspondence can be made into an equivalence of categories, as we are going
to show.

Definition 7.7. The category HqeDGProj is defined as follows:
• The objects are the homotopically locally coherent dg-categories Q such that H0(Q) is

Karoubian.
• The morphisms are the morphisms F : Q → Q′ in Hqe (isomorphism classes of quasi-

functors) with the property that for any Q′ ∈ Q′, the restricted module along the functor
H0(F ):

H0(Q′)(F (−), Q′) = H0(Q′)(H0(F )(−), Q′)
lies in mod(H0(Q)).

We also denote by HqeDGProj
⊕ the full subcategory of HqeDGProj of dg-categories Q such that

H0(Q) is closed under countable coproducts.

Lemma 7.8. HqeDGProj is a subcategory of Hqe.

Proof. Clearly, for any dg-category Q ∈ HqeDGProj and for anyQ ∈ Q, we have thatH0(Q)(−, Q)
lies in mod(H0(Q)), hence HqeDGProj is closed under identities.

To show closure under compositions, let

Q F−→ Q′ G−→ Q′′

be morphisms in HqeDGProj. Let Q′′ ∈ Q′′; by hypothesis, we have an exact sequence:
H0(Q′′)(−, Q1)→ H0(Q′′)(−, Q0)→ H0(Q′′)(G(−), Q′′)→ 0,
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from which we restrict along H0(F ) and get an exact sequence:

H0(Q′′)(F (−), Q1)→ H0(Q′′)(F (−), Q0)→ H0(Q′′)(GF (−), Q′′)→ 0.

Now, since both H0(Q′′)(F (−), Q1) and H0(Q′′)(F (−), Q0) are finitely presented by hypothesis,
the same is true for the cokernel H0(Q′′)(GF (−), Q′′), as desired. □

Definition 7.9. The category Hqet− is defined as follows:
• The objects are dg-categories A endowed with non-degenerate right bounded t-structure

with enough derived projectives.
• The morphisms are the morphisms F : A → B in Hqe (isomorphism classes of quasi-

functors) such that they admit a t-exact right adjoint G : B→ A .
We also denote by Hqet−

⊕ the full subcategory of Hqet− of dg-categories A such that the
t-structure is closed under countable coproducts.

Notice that two dg-categories A,B ∈ Hqet− are isomorphic in Hqet− if and only if there is an
isomorphism A ∼= B in Hqe which preserves the t-structures.

Remark 7.10. If Q,Q′ are hlc dg-categories with Karoubian H0 and F : Q → Q′ is any dg-
functor, then the dg-functor IndF : h-proj(Q)→ h-proj(Q′) actually restricts to a dg-functor

IndF : h-proj−(Q)hfp → h-proj−(Q′)hfp, (7.14)

and the following diagram is commutative, with vertical arrows being quasi-equivalences:

Tw−(Q)
Tw−(F )

//

≈TotQ

��

Tw−(Q′)

≈ TotQ′

��

h-proj−(Q)hfp IndF // h-proj−(Q′)hfp.

(7.15)

Indeed, ifM ∈ h-proj−(Q)hfp, we know from Proposition 5.17 thatM ∼= Tot(Y ) inH0(h-proj(Q)).
By the commutative diagram (4.29), we have

IndF (M) ∼= IndF (Tot(Y )) ∼= Tot(Tw−(F )(Y ))

in H0(h-proj(Q′)), and we know that Tot(Tw−(F )(Y )) ∈ h-proj−(Q′)hfp by Lemma 5.12.

Now, recall from Proposition 4.19 that the functor B 7→ Tw−(B) preserves quasi-equivalences,
hence it induces a functor

Tw− : Hqe→ Hqe,
B 7→ Tw−(B).

If Q is an hlc dg-category with Karoubian H0, we shall identify Tw−(Q) with h-proj−(Q)hfp via
the totalisation TotQ. If F : Q → Q′ is a dg-functor between such dg-categories, then Tw−(F )
is identified with IndF thanks to by (7.15).

Lemma 7.11. The functor Tw− : Hqe→ Hqe induces a functor

Tw− : HqeDGProj → Hqet−,

Q 7→ Tw−(Q) ≡ h-proj−(Q)hfp,
(7.16)

where we endow Tw−(Q) with the natural t-structure of Theorem 7.1.
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Proof. We already know from Theorem 7.1 that if Q ∈ HqeDGProj then h-proj(Q)hfp ∈ Hqet−.
It only remains to show that for any morphism F : Q → Q′ in HqeDGProj, the morphism
Tw−(F ) : Tw−(Q) → Tw−(Q′) has a right adjoint which preserves the t-structures. Since
Tw− preserves quasi-equivalences, without loss of generality we can assume that Q is cofibrant,
so that F can be represented by a dg-functor – which, abusing notation, we also denote by
F . Since we are identifying Tw−(−) with h-proj−(−)hfp via the totalisation dg-functor, by
(7.15) we see that Tw−(F ) is identified with IndF : h-proj−(Q)hfp → h-proj−(Q′)hfp. From Re-
mark 4.17, we know that ResF : h-proj(Q′) → h-proj(Q) is the right adjoint quasi-functor of
IndF : h-proj(Q)→ h-proj(Q′); being a lift of the restriction functor D(Q′)→ D(Q), it is readily
seen that ResF preserves the t-structures. To conclude, it is sufficient to show that ResF restricts
to a quasi-functor

ResF : h-proj−(Q′)hfp → h-proj−(Q)hfp,

which will be the right adjoint of IndF : h-proj−(Q)hfp → h-proj−(Q′)hfp. Hence, we need
to show that for any M ∈ D−(Q′)hfp ∼= H0(h-proj−(Q′)hfp), the restriction M ◦ F lies in
D−(Q)hfp ∼= H0(h-proj−(Q)hfp). First, since Hi(M) = 0 for i ≫ 0, we immediately see that
Hi(M ◦ F ) = 0 for i≫ 0. Moreover, by hypothesis we have an exact sequence

H0(Q′)(−, Q1)→ H0(Q′)(−, Q0)→ Hi(M)→ 0,
which by restriction induces an exact sequence

H0(Q′)(F (−), Q1)→ H0(Q′)(F (−), Q0)→ Hi(M ◦ F )→ 0.
By assumption, H0(Q′)(F (−), Q1) and H0(Q′)(F (−), Q0) are finitely presented, so the same is
true for the cokernel Hi(M ◦ F ), as desired. □

Finally, we prove:

Theorem 7.12. The functor (7.16)
Tw− : HqeDGProj → Hqet− .

is fully faithful, and induces an equivalence of categories:
Tw− : HqeDGProj

⊕ → Hqet−
⊕ .

The inverse is given by
DGProj : Hqet−

⊕ → HqeDGProj
⊕ ,

A→ DGProj(A).
(7.17)

The proof of the above theorem requires some care with the technical details, using the
language of quasi-functors.

Lemma 7.13. Let
T : h-proj−(Q)hfp → h-proj−(Q′)hfp

be a quasi-functor. Then, for all Y ∈ h-proj−(Q)hfp, the restriction T
hQ′ (−)
Y lies in D−(Q′)hfp,

and there is an isomorphism in D(k)

TX
Y

qis
≈ Cdg(Q′)(X,ThQ′ (−)

Y ), (7.18)
“natural” in X and Y in the sense that it lifts to an isomorphism in the derived category
D(h-proj−(Q)hfpop ⊗ h-proj−(Q′)hfp). In particular, given another quasi-functor

T ′ : h-proj−(Q)hfp → h-proj−(Q′)hfp,

we have that T ∼= T ′ (in the derived category) if and only if ThQ′ (−) ∼= ThQ′ (−) in the derived
category D(h-proj−(Q)hfpop ⊗Q′).
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Moreover, if TY is an h-projective dg-module for all Y , the same is true for ThQ′ (−)
Y .

Proof. Since T is a quasi-functor, for all Y ∈ h-proj−(Q)hfp we have

TY

qis
≈ h-proj−(Q′)hfp(−, F (Y )),

for some F (Y ) ∈ h-proj−(Q′)hfp. In particular, by the Yoneda lemma:

T
hQ′ (−)
Y

qis
≈ Cdg(Q′)(hQ′(−), F (Y )) ∼= F (Y ) ∈ h-proj−(Q′)hfp,

hence ThQ′ (−)
Y ∈ D−(Q′)hfp.

There is a natural morphism

TX
Y → Cdg(Q′)(X,ThQ′ (−)

Y )
which is induced by the action

TX
Y ⊗ h-proj−(Q′)hfp(hQ′(−), X)→ T

hQ′ (−)
Y ,

and we have a commutative diagram:

TX
Y

//

≈
��

Cdg(Q′)(X,ThQ′ (−)
Y )

≈
��

h-proj−(Q′)hfp(X,F (Y )) ∼ // h-proj−(Q′)hfp(X,Cdg(Q′)(hQ′(−), F (Y ))).

The rightmost vertical arrow is an isomorphism in D(k) because X is h-projective; the lower
horizontal arrow is a (strict) isomorphism by the Yoneda lemma. This implies that the upper
horizontal arrow is an isomorphism in D(k), as we wanted. Next, let T ′ : h-proj−(Q)hfp →
h-proj−(Q′)hfp be another quasi-functor. If T ∼= T ′ then ThQ′ (−) ∼= (T ′)hQ′ (−) by restriction. On
the other hand, assume there is an isomorphism ThQ′ (−) ≈−→ (T ′)hQ′ (−). For X ∈ h-proj−(Q′)hfp

and Y ∈ h-proj−(Q)hfp, this induces

TX
Y ≈ Cdg(Q′)(X,ThQ′ (−)

Y ) ≈−→ Cdg(Q′)(X,T ′hQ′ (−)
Y ) ≈ (T ′)X

Y ,

which gives an isomorphism of quasi-functors.
Now, assume that TY is h-projective for all Y . Notice that ThQ′

Y is the image of TY with
respect to the restriction functor

Cdg(h-proj−(Q′)hfp)→ Cdg(Q′)

along the Yoneda embedding Q′ ↪→ h-proj−(Q′)hfp. This restriction functor maps any repre-
sentable h-proj−(Q′)hfp(−,M) to

h-proj−(Q′)hfp(hQ′(−),M) = Cdg(Q′)(hQ′(−),M) ∼= M

by the Yoneda lemma. By [5, Proposition 3.2, (4)] we deduce that this restriction functor pre-
serves h-projective dg-modules, hence we have that ThQ′ (−)

Y is actually h-projective, as claimed.
□

Lemma 7.14. Giving an adjunction of quasi-functors
T ⊣ S : h-proj−(Q)hfp → h-proj−(Q′)hfp

is the same as giving an isomorphism in D(k)

Cdg(Q′)(Q(T )hQ′ (−)
Y , X)

qis
≈ Cdg(Q)(Y, ShQ(−)

X ) ≈ SY
X , (7.19)
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“natural” in X and Y in the sense that it lifts to an isomorphism in the derived category
D(h-proj−(Q)hfpop⊗h-proj−(Q′)hfp). Here Q(T ) is, as usual, an h-projective resolution of T as
a bimodule.

Proof. For simplicity, assume that T is h-projective, and identify Q(T ) = T . We have:

Cdg(Q′)(ThQ′ (−)
Y , X) ∼= Cdg(h-proj−(Q′)hfp)(h

T
hQ′ (−)
Y

, hX) (Yoneda)

qis
≈ Cdg(h-proj−(Q′)hfp)(TY , hX),

where the second isomorphism follows from the above Lemma 7.13 and the fact that both TY

and the representable module h
T

hQ′ (−)
Y

are h-projective (recall [5, Lemma 3.4]). Now, since

Cdg(Q)(Y, ShQ(−)
X )

qis
≈ SY

X ≈ Cdg(Q)(hY , SX)

again by Lemma 7.13, we conclude recalling the definition of adjoint quasi-functors (2.8). Every
isomorphism above is “natural” in X and Y in the sense that it lifts to an isomorphism in the
convenient derived category of bimodules. □

Finally, we can prove Theorem 7.12:

Proof of Theorem 7.12. Essential surjectivity of Tw− : HqeDGProj
⊕ → Hqet−

⊕ follows directly from
Theorem 7.2 and the fact that if A ∈ HqeDGProj

⊕ then DGProj(A) is closed under countable
coproducts (Lemma 6.10); we need to show fully faithfulness. Assume without loss of generality
that Q is cofibrant, so that any quasi-functor defined on Q is actually isomorphic to a (strict)
dg-functor. We are going to prove that the inverse of

HqeDGProj(Q,Q′)→ Hqet−(h-proj−(Q)hfp,h-proj−(Q′)hfp),
F 7→ IndF

is given by the restriction map

Hqet−(h-proj−(Q)hfp,h-proj−(Q′)hfp)→ HqeDGProj(Q,Q′),
T 7→ T |Q.

from which we also see that DGProj gives actually the inverse functor of Tw− : HqeDGProj
⊕ →

Hqet−
⊕ . First, since any T ∈ Hqet−(h-proj−(Q)hfp,h-proj−(Q′)hfp) has a t-exact right adjoint,

by Proposition 6.13 we know that H0(T ) preserves the derived projectives, which means that
the essential image of H0(T |Q) is H0(Q′); hence T |Q is actually a quasi-functor Q → Q′, and
the above restriction map is well defined.

Now, start with a dg-functor F : Q → Q′. Then, it is well-known that IndF |Q ∼= F . On the
other hand, start with a quasi-functor

T : h-proj−(Q)hfp → h-proj−(Q′)hfp

admitting a right adjoint S which preserves the t-structures. Upon replacing T with an h-
projective resolution Q(T ), we can assume that T is h-projective as a bimodule. The restriction
T |Q : Q→ Q′ is given by the bimodule ThQ′ (−)

hQ(−) . Since Q is cofibrant, we can assume that there
is a dg-functor F : Q→ Q′ and an isomorphism in the suitable derived category

T
hQ′ (−)
hQ(−) ≈ Q′(−, F (−)).
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Now, we would like to prove that IndF
∼= T as quasi-functors. Clearly, this is equivalent to

proving that the right adjoints are isomorphic: ResF
∼= S. By Lemma 7.13, it is enough to prove

that ReshQ(−)
F

∼= ShQ(−). We compute:

(ResF )hQ(Q)
Y = Cdg(Q)(hQ, Y ◦ F )

∼= (Y ◦ F )(Q) (Yoneda)
∼= Cdg(Q′)(hF (Q), Y )

≈ Cdg(Q′)(ThQ′ (−)
hQ(Q) , Y )

≈ ShQ(Q)
Y . (Lemma 7.14)

Every isomorphism above is “natural” in the sense that it lifts to an isomorphism in the convenient
derived category. The isomorphism in D(k)

Cdg(Q′)(hF (Q), Y ) ≈ Cdg(Q′)(ThQ′ (−)
hQ(Q) , Y )

holds because hF (Q) and T
hQ′ (−)
hQ(Q) are both h-projective (recall Lemma 7.13). Our proof is com-

plete. □
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